西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (1): 27-41.DOI: 10.11885/j.issn.1674-5086.2024.08.31.02
梁诗琴1, 吴伟2, 向威1,3, 赵中会1, 随雅萍2
收稿日期:
2024-08-31
发布日期:
2025-03-12
通讯作者:
吴伟,E-mail:wei@hpu.edu.cn
作者简介:
梁诗琴,1998年生,女,汉族,河南驻马店人,硕士,主要从事深水沉积、层序地层学等方面的研究。E-mail:841309042@qq.com基金资助:
LIANG Shiqin1, WU Wei2, XIANG Wei1,3, ZHAO Zhonghui1, SUI Yaping2
Received:
2024-08-31
Published:
2025-03-12
摘要: 深海水道是陆源碎屑沉积物向深水盆地输送的重要通道之一,同时也是深水盆地中砂体沉积的主要场所,广泛发育于全球范围内的被动大陆边缘。为了厘清深海水道迁移与成因机制,对过往研究进行总结,得出以下结论:根据迁移方式可将深海水道分为单向迁移水道(上游迁移型和下游迁移型)和多向迁移水道(顺流迁移型、侧向迁移型和障碍迁移型);可依据水道深泓线变化对水道迁移特征进行具体表征,单向迁移水道发育伴随深泓线整体变化,多向迁移水道则主要为局部变化;底流与重力流的交互作用控制单向迁移水道的沉积建造,此外自身环流以及上升流作用也影响水道的沉积演化,多向迁移水道则受海平面升降、物源供给、构造运动、古地形与水道自身沉积作用等多种因素共同控制。未来深海水道迁移模式研究和发展方向主要包括3个方面:1)积极开展多尺度的定量化研究;2)深入探究各种动力学因素耦合关联的水道迁移机制;3)加强对水道迁移模式与储层开发的关联研究。
中图分类号:
梁诗琴, 吴伟, 向威, 赵中会, 随雅萍. 深海水道迁移模式及成因机制[J]. 西南石油大学学报(自然科学版), 2025, 47(1): 27-41.
LIANG Shiqin, WU Wei, XIANG Wei, ZHAO Zhonghui, SUI Yaping. Migration Patterns and Genetic Mechanisms of Deep-sea Channels[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2025, 47(1): 27-41.
[1] 李华,何幼斌,冯斌,等.鄂尔多斯盆地西缘奥陶系拉 什仲组深水水道沉积类型及演化[J].地球科学, 2018, 43(6): 2149-2159. doi:10.3799/dqkx.2018.568 LI Hua, HE Youbin, FENG Bin, et al. Type and evolution of deep-water channel deposits of Ordovician Lashizhong Formation in western margin of Ordos Basin[J]. Earth Science 2018, 43(6): 2149-2159. doi:10.3799/dqkx.2018.568 [2] 李华,何幼斌,谈梦婷,等.深水重力流水道朵叶体 系形成演化及储层分布——以鄂尔多斯盆地西缘奥 陶系拉什仲组露头为例[J].石油与天然气地质, 2022, 43(4): 917-928. doi:10.11743/ogg20220414 LI Hua, HE Youbin, TAN Mengting, et al. Evolution of and reservoir distribution within deep-water qravity flow channel-lobe system:A case study of the Ordovician Lashenzhong Formation outcrop at western marain of Ordos Basin[J]. Oil&Gas Geology, 2022, 43(4): 917-928. doi:10.11743/ogg20220414 [3] TEK D E, POYATOS-MORÉ M, PATACCI M, et al. Syndepositional tectonics and mass-transport deposits control channelized, bathymetrically complex deep-water systems (Aínsa depocenter, Spain) [J]. Journal of Sedimentary Research, 2020, 90(7): 729-762. doi:10.2110/jsr.2020.38 [4] 朱一杰,龚承林,邵大力,等.孟加拉湾若开陆缘晚 中新世以来渐进式深水水道形态沉积演化及其 源汇成因[J].地学前缘, 2023, 30(4): 182-195. doi: 10.13745/j.esf.sf.2022.10.22 ZHU Yijie, GONG Chenglin, SHAO Dali, et al. The gradual change in morphology and architecture of submarine channels in the Rakhine margin, Bengal Bay since the Late Miocene and its source-to-sink genesis[J]. Earth Science Frontiers, 2023, 30(4): 182-195. doi:10.13745/j.esf.sf.2022.10.22 [5] LI Hua, WANG Yingmin, ZHU Weilin, et al. Seismic characteristics and processes of the Plio-Quaternary unidirectionally migrating channels and contourites in the northern slope of the South China Sea[J]. Marine and Petroleum Geology, 2013, 43:370-380. doi:10.1016/j.marpetgeo.2012.12.010 [6] 袁圣强,吴时国,赵宗举,等.南海北部陆坡深水区沉 积物输送模式探讨[J].海洋地质与第四纪地质, 2010, 30(4): 39-48. doi:10.3724/SP.J.1140.2010.04039 YUAN Shengqiang, WU Shiguo, ZHAO Zongju, et al. Deepwater sendiment transportation models for northen South China Sea slopes[J]. Marine Geology&Quaternary Geology, 2010, 30(4): 39-48. doi:10.3724/SP.J.1140.2010.04039 [7] 李东伟,龚承林,胡林,等.深水水道沉积内幕级次划 分与精细刻画[J].石油与天然气地质, 2023, 44(3): 553 564. doi:10.11743/ogg20230303 LI Dongwei, GONG Chenglin, HU Lin, et al. Hierarchical division and fine architectural depiction of the interior of deep-water channel deposits[J]. Oil&Gas Geology, 2023, 44(3): 553-564. doi:10.11743/ogg20230303 [8] MAIER K L, FILDANI A, MCHARGUE T R, et al. Punctuated deep-water channel migration:High-resolution subsurface data from the lucia chica channel system, offshore California, U. S. A[J]. Journal of Sedimentary Research, 2012, 82(1-2): 1-8. doi:10.2110/jsr.2012.10 [9] 赵晓明,刘飞,葛家旺,等.深水水道沉积构型单元分 级与结构样式[J].沉积学报, 2023, 41(1): 37-51. doi: 10.14027/j.issn.1000-0550.2022.048 ZHAO Xiaoming,LIU Fei,GE Jiawang,et al. Sedimentary architecture unit classification and structural style of deepwater channels[J]. Acta Sedimentologica Sinica, 2023, 41(1): 37-51. doi:10.14027/j.issn.1000-0550.2022.048 [10] ZHANG Jiajia, WU Shenghe, HU Guangyi, et al. Sedimentary-tectonic interaction on the growth sequence architecture within the intraslope basins of deep-water Niger Delta Basin[J]. Journal of Palaeogeography, 2023, 12(1): 107-128. doi:10.1016/j.jop.2022.11.001 [11] LI Quan, WU Wei, LIANG Jianshe, et al. Deep-water channels in the lower Congo Basin:Evolution of the geomorphology and depositional environment during the Miocene[J]. Marine and Petroleum Geology, 2020, 115: 104260. doi:10.1016/j.marpetgeo.2020.104260 [12] CHENG Cong, JIANG Tao, KUANG Zenggui, et al. Sandrich pleistocene deep-water channels and their implications for gas hydrate accumulation:Evidence from the Qiongdongnan Basin, northern South China Sea[J]. Deep Sea Research Part I:Oceanographic Research Papers, 2023, 198:104101. doi:10.1016/j.dsr.2023.104101 [13] GONG Chenglin, WANG Yinmin, ZHU Weilin, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2013, 97(2): 285-308. doi:10.1306/07121211159 [14] 周伟.深水单向迁移水道建造模式与成因机制研究进 展[J].古地理学报, 2021, 23(6): 1082-1093. doi:10.7605/gdlxb.2021.06.069 ZHOU Wei. Research progress on architectural patterns and formation mechanisms of deep-water unidirectionally migrating channels[J]. Journal of Palaeogeography, 2021, 23(6): 1082-1093. doi:10.7605/gdlxb.2021.06.069 [15] GONG Chenglin, WANG Yingmin, STEEL R J, et al. Flow processes and sedimentation in unidirectionally migrating deep-water channels:From a three-dimensional seismic perspective[J]. Sedimentology, 2016, 63(3): 645-661. doi:10.1111/sed.12233 [16] GONG Chenglin, WANG Yingmin, REBESCO M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels?[J]. Geology, 2018, 46(6): 551-554. doi:10.1130/G40204.1 [17] TIAN Hongxun, LIN Changsong, ZHANG Zhongtao, et al. Depositional architecture, evolution and controlling factors of the Miocene submarine canyon system in the Pearl River Mouth Basin, northern South China Sea[J]. Marine&Petroleum Geology, 2021, 128:104990. doi: 10.1016/j.marpetgeo.2021.104990 [18] ZHU Mangzheng, GRAHAM S, PANG Xiong, et al. Characteristics of migrating submarine canyons from the Middle Miocene to present:Implications for paleoceanographic circulation, northern South China Sea[J]. Marine and Petroleum Geology, 2010, 27(1): 307-319. doi:10.1016/j.marpetgeo.2009.05.005 [19] LIN Changsong, JIANG Jing, SHI Hesheng, et al. Sequence architecture and depositional evolution of the northern continental slope of the South China Sea:Responses to tectonic processes and changes in sea level[J]. Basin Research, 2018, 30(S1): 568-595. doi:10.1111/bre.12238 [20] JIANG Jing, SHI Hesheng, LIN Changsong, et al. Sequence architecture and depositional evolution of the Late Miocene to quaternary northeastern shelf margin of the South China Sea[J]. Marine and Petroleum Geology, 2017, 81:79-97. doi:10.1016/j.marpetgeo.2016.12.025 [21] CHEN Yuhang, YAO Genshun, WANG Xiaofeng, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels:An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique[J]. Sedimentary Geology, 2020, 404:105680. doi:10.1016/j.sedgeo.2020.105680 [22] FONNESU M, PALERMO D, GALBIATI M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents:The giant Eocene Coral Field in northern Mozambique[J]. Marine&Petroleum Geology, 2020, 111: 179-201. doi:10.1016/j.marpetgeo.2019.07.047 [23] SANSOM P. Hybrid turbidite-contourite systems of the Tanzanian margin[J]. Petroleum Geoscience, 2018, 24(3): 258-276. doi:10.1144/petgeo2018-044 [24] MIRAMONTES E, THIÉBLEMONT A, BABONNEAU N, et al. Contourite and mixed turbidite-contourite systems in the Mozambique Channel (SW Indian Ocean): Link between geometry, sediment characteristics and modelled bottom currents[J]. Marine Geology, 2021, 437:106502. doi:10.1016/j.margeo.2021.106502 [25] PEAKALL J, MCCAFFREY B, KNELLER B. A process model for the evolution, morphology, and architecture of sinuous submarine channels[J]. Journal of Sedimentary Research, 2000, 70(3): 434-448. doi:10.1306/2DC4091C-0E47-11D7-8643000102C1865D [26] ZUCKER E, GVIRTZMAN Z, STEINBERG J, et al. Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant Basin[J]. Marine and Petroleum Geology, 2017, 81: 98-111. doi:10.1016/j.marpetgeo.2017.01.002 [27] JARRIEL T, SWARTZ J, PASSALACQUA P. Global rates and patterns of channel migration in river deltas[J].Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(46): 2013178118. doi:10.1073/pnas.2103178118 [28] COVAULT J A, SYLVESTER Z, CEYHAN C, et al. Giant meandering channel evolution, campos deep-water salt basin, Brazil[J]. Geosphere, 2021, 17(6): 1869-1889. doi: 10.1130/GES02420.1 [29] 王光绪,吴伟,李全,等.新西兰深水Taranaki盆地中 新统深水水道迁移及沉积演化[J].沉积学报, 2023, 41(1): 85-96. doi:10.14027/j.issn.1000-0550.2022.040 WANG Guangxu, WU Wei, LI Quan, et al. Migration and sedimentary evolution of the miocene deep-water channel in the deep-water Taranaki Basin, New Zealand[J]. Acta Sedimentologica Sinica, 2023, 41(1): 85-96. doi: 10.14027/j.issn.1000-0550.2022.040 [30] 王光绪,吴伟,林畅松,等.新西兰Taranaki盆地第四 系深水水道迁移规律与沉积模式[J].中国石油大学学 报(自然科学版), 2022, 46(3): 13-24. doi:10.3969/j.issn.1673-5005.2022.03.002 WANG Guangxu, WU Wei, LIN Changsong, et al. Migration rules and depositional model of Quaternary deepwater channel in Taranaki Basin, New Zealand[J]. Journal of China University of Petroleum, 2022, 46(3): 13-24. doi: 10.3969/j.issn.1673-5005.2022.03.002 [31] VITOR A, MORGAN S, CARLOS P, et al. Lateral accretion packages (LAPs): An important reservoir element in deep water sinuous channels[J]. Marine and Petroleum Geology, 2003, 20(6-8): 631. doi:10.1016/j.marpetgeo.2003.08.003 [32] 张文彪,段太忠,刘志强,等.深水浊积水道沉积构型 模式及沉积演化:以西非M油田为例[J].地球科学, 2017, 42(2): 273-285. doi:10.3799/dqkx.2017.020 ZHANG Wenbiao, DUAN Taizhong, LIU Zhiqiang, et al. Architecture model and sedimentary evolution of deepwater turbidity channel:A case study of M Oilfield in West Africa[J]. Earth Science, 2017, 42(2): 273-285. doi:10.3799/dqkx.2017.020 [33] 孙辉,范国章,邵大力,等.深水局部限制型水道复 合体沉积特征及其对储层性质的影响——以东非鲁 武马盆地始新统为例[J].石油与天然气地质, 2021, 42(6): 1440-1450. doi:10.11743/ogg2021618 SUN Hui, FAN Guozhang, SHAO Dali, et al. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties:A case study of the Eocene series, Rovuma Basin;[J]. Oil and Gas Geology, 2021, 42(6): 1440-1450. doi:10.11743/ogg-2021618 [34] LEWIS M M, MUGWANYA K E, MAYALL M. Quantitative analysis of the structural evolution of salt diapirs and their impact on sediment routing and the architecture of deep-water channel reservoirs, Venus field offshore Angola[J]. Marine&Petroleum Geology, 2023, 155:106380. doi:10.1016/j.marpetgeo.2023.106380 [35] 陈亮,赵千慧,王英民,等.盐构造与深水水道的交互作 用——以下刚果盆地为例[J].沉积学报, 2017, 35(6): 1197-1204. doi:10.14027/j.cnki.cjxb.2017.06.011 CHEN Liang, ZHAO Qianhui, WANG Yingmin, et al. Interactions between submarine channels and salt structures: Examples from the Lower Congo Basin[J]. Acta Sedimentologica Sinica, 2017, 35(6): 1197-1204. doi:10.14027/j.cnki.cjxb.2017.06.011 [36] LOWE D R, GRAHAM S A, MALKOWSKI M A, et al. The role of avulsion and splay development in deep-water channel systems:Sedimentology, architecture, and evolution of the deep-water Pliocene Godavari "A" channel complex, India[J]. Marine&Petroleum Geology, 2019, 105:81-99. doi:10.1016/j.marpetgeo.2019.04.010 [37] SANTRA M, FLEMINGS P B, SCOTT E, et al. Evolution of gas hydrate-bearing deep-water channel-levee system in abyssal Gulf of Mexico:Levee growth and deformation[J]. AAPG Bulletin, 2020, 104(9): 1921-1944. doi: 10.1306/04251918177 [38] ARNOTT R W C, TILSTON M, FRAINO P, et al. Laterally accreting sinuous channels and their deposits:The goldilocks of deep-water slope systems[J]. Journal of Sedimentary Research, 2021, 91(5): 451-463. doi:10.2110/jsr.2020.144 [39] DEPTUCK M E, SYLVESTER Z, PIRMEZ C, et al. Migration-aggradation history and 3-D seismic geomorphology of submarine channels in the Pleistocene Beninmajor Canyon, western Niger Delta Slope[J]. Marine and Petroleum Geology, 2007, 24(6-9): 406-433. doi:10.1016/j.marpetgeo.2007.01.005 [40] POSTMA G, LANG J, HOYAL D C, et al. Reconstruction of bedform dynamics controlled by supercritical flow in the channel-lobe transition zone of a deep-water delta (Sant Lloren del Munt, north-east Spain, Eocene) [J]. Sedimentology, 2021, 68(4): 1674-1697. doi:10.1111/sed.12735 [41] BABONNEAU N, SAVOYE B, CREMER M, et al. Morphology and architecture of the present canyon and channel system of the zaire deep-sea fan[J]. Marine and Petroleum Geology, 2002, 19(4): 445-467. doi:10.1016/S0264-8172(02) 00009-0 [42] CAMPBELL D C, MOSHER D C. Geophysical evidence for widespread Cenozoic bottom current activity from the continental margin of Nova Scotia, Canada[J]. Marine Geology, 2016, 378:237-260. doi:10.1016/j.margeo.2015.10.005 [43] LABOURDETTE R. Integrated three-dimensional modeling approach of stacked turbidite channels[J]. AAPG Bulletin, 2007, 91(11): 1603-1618. doi:10.1306/06210706-143 [44] SÉRANNE M, ABEIGNE C N. Oligocene to Holocene sediment drifts and bottom currents on the slope of Gabon continental margin (West Africa): Consequences for sedimentation and southeast Atlantic upwelling[J]. Sedimentary Geology, 1999, 128(3-4): 179-199. doi:10.1016/S0037-0738(99) 00069-X [45] KEEVIL G M, PEAKALL J, BEST J L, et al. Flow structure in sinuous submarine channels:Velocity and turbulence structure of an experimental submarine channel[J]. Marine Geology, 2006, 229(3-4): 241-257. doi:10.1016/j.margeo.2006.03.010 [46] RASMUSSEN S, LYKKE-ANDERSEN H, KUIJPERS A, et al. Post-Miocene sedimentation at the continental rise of southeast greenland:The interplay between turbidity and contour currents[J]. Marine Geology, 2003, 196(1-2): 37-52. doi:10.1016/S0025-3227(03) 00043-4 [47] SUN Qiliang, CARTWRIGHT J, WU Shiguo, et al. Submarine erosional troughs in the northern South China Sea: Evidence for Early Miocene deepwater circulation and paleoceanographic change[J]. Marine and Petroleum Geology, 2016, 77:75-91. doi:10.1016/j.marpetgeo.2016.06.005 [48] TIAN Jie, WU Shiguo, LÜ Fuliang, et al. Middle Miocene mound-shaped sediment packages on the slope of the Xisha carbonate platforms, South China Sea:Combined result of gravity flow and bottom current[J]. Deep Sea Research Part II:Topical Studies in Oceanography, 2015, 122:172-184. doi:10.1016/j.dsr2.2015.06.016 [49] RASMUSSEN E S. The relationship between submarine canyon fill and sea-level change:An example from Middle Miocene Offshore Gabon, West Africa[J]. Sedimentary Geology, 1994, 90(1-2): 61-75. doi:10.1016/0037-0738(94) 90017-5 [50] FUHRMANN A, KANE I A, CLARE M A, et al. Hybrid turbidite-drift channel complexes:An integrated multiscale model[J]. Geology, 2020, 48(6): 562-568. doi:10.1130/G47179.1 [51] 姜静,张忠涛,李浩,等.珠江口盆地东北陆架边缘 斜坡带晚中新世第四纪层序模式与单向迁移水 道[J].石油与天然气地质, 2019, 40(4): 864-874. doi: 10.11743/ogg20190415 JIANG Jing, ZHANG Zhongtao, LI Hao, et al. Late Miocene to Quaternary sequence architecture and unidirectionally-migrating channels in the northeastern continental slope, Pearl River Mouth Basin[J]. Oil&Gas Geology, 2019, 40(4): 864-874. doi:10.11743/ogg20190415 [52] HE Yunlong, XIE Xinong, KNELLER B C, et al. Architecture and controlling factors of canyon fills on the shelf margin in the Qiongdongnan Basin, northern South China Sea[J]. Marine and Petroleum Geology, 2013, 41(1): 264-276. doi:10.1016/j.marpetgeo.2012.03.002 [53] 李俞锋.琼东南盆地北礁凹陷梅山组单向迁移水道特 征及成因探讨[J].海洋学报, 2019, 41(1): 72-86. doi: 10.3969/j.issn.0253-4193.2019.01.008 LI Yufeng. The characteristics and origin of unidirectionally migrating channels of Meishan Formation in the Beijiao Sag, Qiongdongnan Basin[J]. Acta Oceanologica Sinica, 2019, 41(1): 72-86. doi:10.3969/j.issn.0253-4193.2019.01.008 [54] 龚承林,徐长贵,尤丽,等.深海重力流与底流交互作 用的沉积响应及其勘探意义[J].矿物岩石地球化学 通报, 2024, 43(4): 721-733. doi:10.3724/j.issn.1007-2802.20240025 GONG Chenglin, XU Changgui, YOU Li, et al. Depositional responses of the interaction between deep-marine gravity and bottom curents and their exploration significance[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2024, 43(4): 721-733. doi:10.3724/j.issn.10-07-2802.20240025 [55] 李华,王英民,徐强,等.深水单向迁移水道-堤岸沉 积体系特征及形成过程[J].现代地质, 2013, 27(3): 653-661. doi:10.3969/j.issn.1000-8527.2013.03.017 LI Hua, WANG Yingmin, XU Qiang, et al. Characteristics and processes of deep water unidirectionally-migrating channel-levee system[J]. Geoscience, 2013, 27(3): 653-661. doi:10.3969/j.issn.1000-8527.2013.03.017 [56] 孙辉,刘少治,范国章,等.深水复合水道体系沉积特 征及时空演化规律——以东非鲁武马盆地中中新统为例[J].海洋学报, 2019, 41(1): 87-97. doi:10.3969/j.issn.0253-4193.2019.01.009 SUN Hui, LIU Shaozhi, FAN Guozhang, et al. Depositional characteristics and temporal and spatial evolution of deep water channel complex systems:A case study of Middle Miocene in the Rovuma Basin, East Africa[J]. Haiyang Xuebao, 2019, 41(1): 87-97. doi:10.3969/j.issn.0253-4193.2019.01.009 [57] FLOOD R D. A lee wave model for deep-sea mudwave activity[J]. Deep Sea Research Part A. Oceanographic Research Papers, 1988, 35(6): 973-983. doi:10.1016/0198-0149(88) 90071-4 [58] 杨志力,李丽,吴佳男,等.西沙海域晚中新世深水水 道发育特征及主控因素[J].东北石油大学学报, 2023, 47(4): 29-38, 69. doi:10.3969/j.issn.2095-4107.2023.04.003 YANG Zhili, LI Li, WU Jianan, et al. Development characteristics and controlling factors of Late Miocene deepwater channels in Xisha Area[J]. Journal of Northeast Petroleum University, 2023, 47(4): 29-38, 69. doi:10.3969/j.issn.2095-4107.2023.04.003 [59] 关永贤,杨胜雄,宋海斌,等.南海西南部深水水道的 多波束地形与多道反射地震研究[J].地球物理学报, 2016, 59(11): 4153-4161. doi:10.6038/cjg20161118 GUAN Yongxian, YANG Shengxiong, SONG Haibin, et al. Study of deep water channels in sw South China Sea based on multi-beam bathymetric and multi-channel reflection seismic data[J]. Chinese Journal of Geophysics, 2016, 59(11): 4153-4161. doi:10.6038/cjg20161118 [60] 王琪,田兵,马晓峰,等.珠江口盆地白云深水区 深水水道沉积体系及成因模式[J].天然气地球 科学, 2017, 28(10): 1497-1505. doi:10.11764/j.issn.1672-1926.2017.08.003 WANG Qi, TIAN Bing, MA Xiaofeng, et al. Deposition system and formation mechanism of deepwater channel in Baiyun deepwater area, Pearl River Mouth Basin[J]. Natural Gas Geoscience, 2017, 28(10): 1497-1505. doi:10.11764/j.issn.1672-1926.2017.08.003 [61] 姚悦,周江羽,雷振宇,等.西沙海槽盆地强限制性中 央峡谷水道地震相与内部结构的分段特征[J].沉积 学报, 2018, 36(4): 787-795. doi:10.14027/j.issn.1000-0550.2018.048 YAO Yue, ZHOU Jiangyu, LEI Zhenyu, et al. High restriction seismic facies and inner structural segmentation features of the central Canyon channel systems in Xisha trough basin[J]. Acta Sedimentologica Sinica, 2018, 36(4): 787-795. doi:10.14027/j.issn.1000-0550.2018.048 [62] 李超,陈国俊,张功成,等.琼东南盆地深水区东段中 中新世深水扇发育特征及物源分析[J].天然气地球 科学, 2017, 28(10): 1555-1564. doi:10.11764/j.issn.1672-1926.2017.08.009 LI Chao, CHEN Guojun, ZHANG Gongcheng, et al. Developmental characteristics and provenances of the submarine fans developed during the Middle Miocene in the eastern deepwater area of the Qiongdongnan[J]. Basin Natural Gas Geoscience, 2017, 28(10): 1555-1564. doi:10.11764/j.issn.1672-1926.2017.08.009 [63] 蔡露露,谢晓军,李建平,等.深水沉积差异及其对 油气分布影响——以尼日尔三角洲盆地东西部深水扇为例[J].沉积学报, 2022, 40(1): 229-243. doi:10.14027/j.issn.1000-0550.2020.093 CAI Lulu, XIE Xiaojun, LI Jianping, et al. Influence of different modes of deep-water sedimentation on oil and gas distribution:A case study of deep-water fans in eastern and western Niger Delta Basin[J]. Acta Sedimentologica Sinica, 2022, 40(1): 229-243. doi:10.14027/j.issn.1000-0550.2020.093 [64] 秦雁群,张光亚,计智峰,等.印度东部盆地群地质特 征、油气成藏与深水区勘探潜力[J].石油勘探与开发, 2017, 44(5): 691-703. doi:10.11698/PED.2017.05.04 QIN Yanqun, ZHANG Guangya, JI Zhifeng, et al. Geological features, hydrocarbon accumulation and deep water potential of East Indian basins[J]. Petroleum Exploration and Development, 2017, 44(5): 691-703. doi:10.11698/PED.2017.05.04 [65] 李全,吴伟,康洪全,等.西非下刚果盆地深水水道 沉积特征及控制因素[J].石油与天然气地质, 2019, 40(4): 917-929. doi:10.11743/ogg20190419 LI Quan, WU Wei, KANG Hongquan, et al. Characteristics and controlling factors of deep-water channel sedimentation in Lower Congo Basin, West Africa[J]. Oil& Gas Geology, 2019, 40(4): 917-929. doi:10.11743/ogg-20190419 [66] 郭帅,杨海长,曾清波,等.白云凹陷恩平组南部物 源研究及其油气地质意义[J].海洋地质前沿, 2020, 36(6): 56-63. doi:10.16028/j.1009-2722.2019.191 GUO Shuai, YANG Haizhang, ZENG Qingbo, et al. Provenance of enping formation in the southern Baiyun Sag, Pearl River Mouth Basin and its implications for petroleum geology[J]. Marine Geology Frontiers, 2020, 36(6): 56-63. doi:10.16028/j.1009-2722.2019.191 [67] CRONIN B T. Giant pockmark-initiated deep-water slope channel complexes[J]. AAPG Bulletin, 2022, 106(4): 829-868. doi:10.1306/11042118179 [68] 李华,何幼斌,王振奇.深水高弯度水道-堤岸沉积体 系形态及特征[J].古地理学报, 2011, 13(2): 139-149. LI Hua, HE Youbin, WANG Zhenqi. Morphology and characteristics of deep water high sinuous channel-levee system[J]. Journal of Palaeogeography (Chinese Edition), 2011, 13(2): 139-149. [69] DON J, SHAW J H, PLESCH A, et al. Characterizing the growth of structures in three dimensions using patterns of deep-water fan and channel systems[J]. AAPG Bulletin, 2020, 104(1): 177-203. doi:10.1306/04301918255 [70] WANG Rubin, WANG Yunzi, WAN Jianxin, et al. Propagation mechanism of deep-water impulse waves generated by landslides in V-Shaped river channels of mountain valleys:Physical model of regular rigid block[J]. Geofluids, 2023(1): 1743305. doi:10.1155/2023/1743305 [71] 胡迅,尹艳树,冯文杰,等.深水浊积水道训练图像建 立与多点地质统计建模应用[J].石油与天然气地质, 2019, 40(5): 1126-1134. doi:10.11743/ogg20190518 HU Xun, YIN Yanshu, FENG Wenjie, et al. Establishment of training images of turbidity channels in deep waters and application of multi-point geostatistical modeling[J]. Oil and Gas Geology, 2019, 40(5): 1126-1134. doi:10.11743/ogg20190518 [72] 付超,谢玉洪,王晖,等.深水峡谷复合浊积砂体内 隔夹层发育类型与沉积成因——以琼东南盆地中央峡谷为例[J].天然气工业, 2023, 43(5): 23-33. doi: 10.3787/j.issn.1000-0976.2023.05.003 FU Chao, XIE Yuhong, WANG Hui, et al. Types and sedimentary genesis of barriers and interlayers in the composite turbidite sand bodies of deep-water canyon:A case study of the Central Canyon in the Qiongdongnan Basin[J]. Natural Gas Industry, 2023, 43(5): 23-33. doi: 10.3787/j.issn.1000-0976.2023.05.003 [73] YU Ye, ZHANG Changmin, WANG Li, et al. Sedimentary characteristics and genetic mechanism of a deep-water channel system in the Zhujiang Formation of Baiyun Sag, Pearl River Mouth Basin[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2021, 168:103456. doi: 10.1016/j.dsr.2020.103456 [74] MEIROVITZ C D, STRIGHT L, HUBBARD S M, et al. The influence of inter-and intra-channel architecture on deep-water turbidite reservoir performance[J]. Petroleum Geoscience, 2021, 27(2): petgeo2020-005. doi:10.1144/petgeo2020-005 [75] CRONIN B T, AKHMETZHANOV A M, MAZZINI A, et al. Morphology, evolution and fill:Implications for sand and mud distribution in filling deep-water canyons and slope channel complexes[J]. Sedimentary Geology, 2005, 179(1-2): 71-97. doi:10.1016/j.sedgeo.2005.04.013 |
[1] | 刘飞, 赵晓明, 冯潇飞, 曹树春, 卜范青. 构型模式约束下深海水道连续性定量表征[J]. 西南石油大学学报(自然科学版), 2025, 47(1): 16-26. |
[2] | 马宏霞, 朱越越, 许小勇, 何云龙, 王红平. 东非鲁伍马盆地海底峡谷发育特征及成因机制[J]. 西南石油大学学报(自然科学版), 2025, 47(1): 67-79. |
[3] | 穆柏雨, 赵晓明, 齐昆, 刘飞, 李发有. 深海水道在盐底辟型微盆地中的发育演化[J]. 西南石油大学学报(自然科学版), 2025, 47(1): 95-106. |
[4] | 陈利新, 王胜雷, 万效国, 苏洲, 马兵山. 哈拉哈塘地区共轭走滑断裂差异特征及演化[J]. 西南石油大学学报(自然科学版), 2024, 46(4): 19-37. |
[5] | 严科1,2,赵红兵1. 三角洲前缘储层中钙质夹层分布及成因探讨[J]. 西南石油大学学报(自然科学版), 2014, 36(1): 33-38. |
[6] | 叶兴树;吴国海 . 板桥油田低电阻率油层成因机制分析[J]. 西南石油大学学报(自然科学版), 2010, 32(5): 79-82. |
[7] | 周彦 谭秀成 刘宏 罗玉宏 张孝兰. 磨溪气田嘉二段鲕粒灰岩储层特征及成因机制[J]. 西南石油大学学报(自然科学版), 2007, 29(4): 30-33. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||