[1] 郭旭升,腾格尔,魏祥峰,等. 四川盆地深层海相页岩气赋存机理与勘探潜力[J]. 石油学报, 2022, 43(4): 453-468. doi: 10.7623/syxb202204001 GUO Xusheng, BORJIGIN Tenger, WEI Xiangfeng, et al. Occurrence mechanism and exploration potential of deep marine shale gas in Sichuan Basin[J]. Acta Petrolei Sinica, 2022, 43(4): 453-468. doi: 10.7623/syxb202204001 [2] 邹才能,潘松圻,荆振华,等. 页岩油气革命及影响[J]. 石油学报, 2020, 41(1): 1-12. doi: 10.7623/syxb2020-01001 ZOU Caineng, PAN Songqi, JING Zhenhua, et al. Shale oil and gas revolution and its impact[J]. Acta Petrolei Sinica, 2020, 41(1): 1-12. doi: 10.7623/syxb202001001 [3] 王建,郭秋麟,赵晨蕾,等. 中国主要盆地页岩油气资源潜力及发展前景[J]. 石油学报, 2023, 44(12): 2033-2044. doi: 10.7623/syxb202312003 WANG Jian, GUO Qiulin, ZHAO Chenlei, et al. Potentials and prospects of shale oil gas resources in maior basins of China[J]. Acta Petrolei Sinica, 2023, 44(12): 2033-2044. doi: 10.7623/syxb202312003 [4] 刘可禹,刘畅.“化学-沉积相”分析:一种研究细粒沉积岩的有效方法[J]. 石油与天然气地质, 2019, 40(3): 491-503. doi: 10.11743/ogg20190305 LIU Keyu, LIU Chang. “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks[J]. Oil & Gas Geology, 2019, 40(3): 491-503. doi: 10.11743/ogg20190305 [5] WANG Jian, CAO Yingchang, LIU Keyu, et al. Fractal characteristics of the pore structures of fine-grained, mixed sedimentary rocks from the Jimsar Sag, Junggar Basin: Implications for lacustrine tight oil accumulations[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106363. doi: 10.1016/j.petrol.2019.106363 [6] ZHANG Bin, ZHU Hongtao, YANG Xianghua, et al. Depositional characteristics in the Lower Congo Basin during the Cenomanian-Turonian stage: Insights from finegrained sedimentary rocks[J]. Marine and Petroleum Geology, 2024, 170: 107151. doi: 10.1016/j.marpetgeo.2024.107151 [7] 朱如凯,李梦莹,杨静儒,等. 细粒沉积学研究进展与发展方向[J]. 石油与天然气地质, 2022, 43(2): 251-264. doi: 10.11743/ogg20220201 ZHU Rukai, LI Mengying, YANG Jingru, et al. Advances and trends of fine-grained sedimentology[J] Oil & Gas Geology, 2022, 43(2): 251-264. doi: 10.11743/ogg2022-0201 [8] 刘翰林,邹才能,邱振,等. 鄂尔多斯盆地延长组7 段3 亚段异常高有机质沉积富集因素[J]. 石油学报, 2022, 43(11): 1520-1541. doi: 10.7623/syxb202211002 LIU Hanlin, ZOU Caineng, QIU Zhen, et al. Sedimentary enrichment factors of extraordinarily high organic matter in the sub-member 3 of Member 7 of Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2022, 43(11): 1520-1541. doi: 10.7623/syxb202211002 [9] 梁狄刚,郭彤楼,边立曾,等. 中国南方海相生烃成藏研究的若干新进展(三)南方四套区域性海相烃源岩的沉积相及发育的控制因素[J]. 海相油气地质, 2009, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001 LIANG Digang, GUO Tonglou, BIAN Lizeng, et al. Some progresses on studies of hydrocarbon generation and accumulation in marine sedimentary regions, Southern China (Part 3): Controlling factors on the sedimentary facies and development of palaeozoic marine source rocks[J]. Marine Origin Petroleum Geology, 2009, 14(2): 1-19. doi: 10.3969/j.issn.1672-9854.2009.02.001 [10] 马永生,蔡勋育,赵培荣,等. 四川盆地大中型天然气田分布特征与勘探方向[J]. 石油学报, 2010, 31(3): 347-354. doi: 10.7623/syxb201003001 MA Yongsheng, CAI Xunyu, ZHAO Peirong, et al. Distribution and further exploration of the large-medium sized gas fields in Sichuan Basin[J]. Acta Petrolei Sinica, 2010, 31(3): 347-354. doi: 10.7623/syxb201003001 [11] 郭彤楼,邓虎成,赵爽,等. 四川盆地寒武系筇竹寺组新类型页岩气形成机理与勘探突破[J/OL]. 石油勘探与开发, 2024.(2024-11-22)[2024-12-01]. https://www.cpedm.com/CN/10.11698/PED.20240478. GUO Tonglou, DENG Hucheng, ZHAO Shuang, et al. Formation mechanisms and exploration breakthroughs of new type of shale gas in Cambrian Qiongzhusi Formation, Sichuan Basin[J/OL]. Petroleum Exploration and Development, 2024. (2024-11-22)[2024-12-01]. https://www.cpedm.com/CN/10.11698/PED.20240478. [12] 周桦,董晓霞,魏力民,等. 井研—犍为地区—筇竹寺组粉砂质页岩储层特征[J]. 天然气技术与经济, 2023, 17(2): 23-31, 46. doi: 10.3969/j.issn.2095-1132.2023.02.004 ZHOU Hua, DONG Xiaoxia, WEl Limin, et al. Characteristics on silty shale reservoirs of Qiongzhusi Formation, Jingyan-Qianwei Area[J]. Natural Gas Technoligy and Economy, 2023, 17(2): 23-31, 46. doi: 10.3969/j.issn.2095-1132.2023.02.004 [13] 范海经,邓虎成,伏美燕,等. 四川盆地下寒武统筇竹寺组沉积特征及其对构造的响应[J]. 沉积学报, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041 FAN Haijing, DENG Hucheng, FU Meiyan, et al. Sedimentary characteristics of Lower Cambrian Qiongzhusi Formation in the Sichuan Basin and its response to construction[J]. Acta Geologica Sinica, 2021, 39(4): 1004-1019. doi: 10.14027/j.issn.1000-0550.2020.041 [14] 马文辛,刘树根,黄文明,等. 四川盆地周缘筇竹寺组泥页岩储层特征[J]. 成都理工大学学报(自然科学版), 2012, 39(2): 182-189. doi: 10.3969/j.issn.1671-9727.2012.02.011 MA Wenxin, LIU Shugen, HUANG Wenming, et al. Mud shale reservoirs characteristics of Qiongzhusi Formation on the margin of Sichuan Basin[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(2): 182-189. doi: 10.3969/j.issn.1671-9727.2012.02.011 [15] LI Zhengxiang, ZHANG Llinghua, CHRISTOPHER M P. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia[J]. Geology, 1995, 23(5): 407-410. [16] LI Zhengxiang, LI Xianhua, ZHOU Hanwen, et al. Grenvillian continental collision in south China: New shrimp U-Pb zircon results and implications for the configuration of Rodinia[J]. Geology, 2002, 30(2): 163-166. [17] 刘树根,孙玮,罗志立,等. 兴凯地裂运动与四川盆地下组合油气勘探[J]. 成都理工大学学报(自然科学版), 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03 LIU Shugen, SUN Wei, LUO Zhili, et al. Xingkai taphrogenesis and petroleum exploration from Upper Sinian to Cambrian Strata in Sichuan Basin, China[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2013, 40(5): 511-520. doi: 10.3969/j.issn.1671-9727.2013.05.03 [18] 管树巍,吴林,任荣,等. 中国主要克拉通前寒武纪裂谷分布与油气勘探前景[J]. 石油学报, 2017, 38(1): 9-22. doi: 10.7623/syxb201701002 GUAN Shuwei, WU Lin, REN Rong, et al. Distribution and petroleum prospeet of Precambrian rifts in the main cratons, China[J]. Acta Petrolei Sinica, 2013, 38(1): 9-22. doi: 10.7623/syxb201701002 [19] 熊亮,葛忠伟,王同,等. 川南寒武系筇竹寺组勘探潜力研究[J]. 油气藏评价与开发, 2021, 11(1): 14-21, 55. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.003 XIONG Liang, GE Zhongwei, WANG Tong, et al. Exploration potential of Cambrian Qiongzhusi Formation in southern Sichuan Basin[J]. Petroleum Reservoir Evaluation and Development, 2021, 11(1): 14-21, 55. doi: 10.13809/j.cnki.cn32-1825/te.2021.01.003 [20] 汪泽成,姜华,王铜山,等. 四川盆地桐湾期古地貌特征及成藏意义[J]. 石油勘探与开发, 2014, 41(3): 305-312. doi: 10.11698/PED.2014.03.05 WANG Zecheng, JIANG Hua, WANG Tongshan, et al. Paleo-geomorphology formed during Tongwan tectonization in Sichuan Basin and its significance for hydrocarbon accumulation[J]. Petroleum Exploration and Development, 2014, 41(3): 305-312. doi: 10.11698/PED.2014.03.05 [21] LI Da, LING Hongfei, GRAHAM A, et al. Carbon and strontium isotope evolution of seawater across the Ediacaran-Cambrian transition: Evidence from the Xiaotan Section, NE Yunnan, South China[J]. Precambrian Research, 2013, 225: 128-147. doi: 10.1016/j.precamres.2012.01.002 [22] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China: characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2): 166-178. doi: 10.11698/PED.2016.02.02 [23] 赵建华,金之钧,林畅松,等. 上扬子地区下寒武统筇竹寺组页岩沉积环境[J]. 石油与天然气地质, 2019, 40(4): 701-715. doi: 10.11743/ogg20190402 ZHAO Jianhua, JIN Zhijun, LIN Changsong, et al. Sedimentary environment of the Lower Cambrian Qiongzhusi Formation shale in the Upper Yangtze Region[J]. Oil & Gas Geology, 2019, 40(4): 701-715. doi: 10.11743/ogg-20190402 [24] 王志伟,钟怡江,刘磊,等. 鄂西—渝东地区早寒武世克拉通内裂陷演化及对古地理格局的控制[J]. 沉积学报, 2023, 41(4): 1110-1123. doi: 10.14027/j.issn.1000-0550.2021.161 WANG Zhiwei, ZHONG Yijiang, LIU Lei, et al. Evolution of Early Cambrian intracraton rift and its influence on the paleogeographical pattern, western Hubei-eastern Chongqing[J]. Acta Geologica Sinica, 2023, 41(4): 1110-1123. doi: 10.14027/j.issn.1000-0550.2021.161 [25] 任建业,陆永潮,张青林,等. 断陷盆地构造坡折带形成机制及其对层序发育样式的控制[J]. 地球科学(中国地质大学学报), 2004, 29(5): 596-602. REN Jianye, LU Yongchao, ZHANG Qinglin, et al. Forming mechanism of structural slope-break and its control on sequence style in faulted basin[J]. Earth Science: Journal of China University of Geosciences, 2004, 29(5): 596-602. [26] 吴冬,邓虎成,熊亮,等. 四川盆地及其周缘下寒武统麦地坪组—筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. doi: 10.11743/ogg20230318 WU Dong, DENG Hucheng, XlONG Liang, et al. Sequence filling and evolutionary model of the Lower Cambrian Maidiping-Qiongzhusi formations in Sichuan Basin and on its periphery[J]. Oil & Gas Geology, 2023, 44(3): 764-777. doi: 10.11743/ogg20230318 [27] 熊亮,邓虎成,吴冬,等. 四川盆地及其周缘下寒武统筇竹寺组细粒沉积特征与影响因素[J]. 石油实验地质, 2023, 45(5): 857-871. doi: 10.11781/sysydz202305857 XIONG Liang, DENG Hucheng, WU Dong, et al. Finegrained sedimentary characteristics and influencing factors of the Lower Cambrian Qiongzhusi Formation in Sichuan Basin and on its periphery[J]. Petroleum Geology & Experiment, 2023, 45(5): 857-871. doi: 10.11781/sysydz202305857 [28] 刘树根,孙玮,宋金民,等. 四川盆地海相油气分布的构造控制理论[J]. 地学前缘, 2015, 22(3): 146-160. doi: 10.13745/j.esf.2015.03.013 LIU Shugen, SUN Wei, SONG Jinmin, et al. Tectonicscontrolled distribution of marine petroleum accumulations in the Sichuan Basin, China[J]. Earth Science Frontiers, 2015, 22(3): 146-160. doi: 10.13745/j.esf.2015.03.013 [29] FAN S J, SWIFT D J P, TRAYKOVSKI P, et al. River flooding, storm resuspension, and event stratigraphy on the northern California shelf: Observations compared with simulations[J]. Marine Geology, 2004, 210(1-4): 17-41. doi: 10.1016/j.margeo.2004.05.024 [30] SHCHEPETKINA A, GINGRAS M K, PEMBERTON S G. Modern observations of floccule ripples: Petitcodiac river estuary, New Brunswick, Canada[J]. Sedimentology, 2018, 65(2): 582-596. [31] WHEATCROFT R A, DRAKE D E. Post-depositional alteration and preservation of sedimentary event layers on continental margins, I. The role of episodic sedimentation[J]. Marine Geology, 2003, 199(1-2): 123-137. doi: 10.1016/S0025-3227(03)00146-4 [32] SCHIEBER J, SOUTHARD J, THAISEN K. Accretion of mudstone beds from migrating floccule ripples[J]. Science, 2007, 318(5857): 1760-1763. doi: 10.1126/science.1147001 [33] SCHIEBER J, SOUTHARD J B. Bedload transport of mud by floccule ripples: Direct observation of ripple migration processes and their implications[J]. Geology, 2009, 37(6): 483-486. doi: 10.1130/G25319A.1 [34] YAWAR Z, SCHIEBER J. On the origin of silt laminae in laminated shales[J]. Sedimentary Geology, 2017, 360: 22-34. doi: 10.1016/j.sedgeo.2017.09.001 [35] 杨雨,罗冰,张本健,等. 四川盆地下寒武统筇竹寺组烃源岩有机质差异富集机制与天然气勘探领域[J]. 石油实验地质, 2021, 43(4): 611-619. doi: 10.11781/sysydz202104611 YANG Yu, LUO Bing, ZHANG Benjian, et al. Differential mechanisms of organic matter accumulation of source rocks in the Lower Cambrian Qiongzhusi Formation and implications for gas exploration fields in Sichuan Basin[J]. Petroleum Geology & Experiment, 2021, 43(4): 611-619. doi: 10.11781/sysydz202104611 [36] 李依林,伏美燕,邓虎成,等. 滨岸闭塞环境中有机质富集模式——以川西南峨边葛村剖面筇竹寺组为例[J]. 天然气地球科学, 2022, 33(4): 588-604. doi: 10.11764/j.issn.1672-1926.2021.10.003 Ll Yilin, FU Meiyan, DENG Hucheng, et al. The enrichment model of organic matter in the coastal detention environment: Case study of the Qiongzhusi Formation in the Gecun sectionof Ebian in southwestern Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(4): 588-604. doi: 10.11764/j.issn.1672-1926.2021.10.003 [37] FAUGÈRES J C, STOW D A V. Bottom-current-controlled sedimentation: A synthesis of the contourite problem[J]. Sedimentary Geology, 1993, 82(1-4): 287-297. doi: 10.1016/0037-0738(93)90127-Q [38] REBESCO M, HERNÁNDEZ-MOLINA F J, VAN ROOIJ D, et al. Contourites and associated sediments controlled by deep-water circulation processes: State-of-theart and future considerations[J]. Marine Geology, 2014, 352: 111-154. doi: 10.1016/j.margeo.2014.03.011 [39] STOW D, SMILLIE Z. Distinguishing between deepwater sediment facies: Turbidites, contourites and hemipelagites[J]. Geosciences, 2020, 10(2): 68. doi: 10.3390/geosciences10020068 [40] 李一凡,魏小洁,樊太亮. 海相泥页岩沉积过程研究进展[J]. 沉积学报, 2021, 39(1): 73-87. doi: 10.14027/j.issn.1000-0550.2020.131 LI Yifan, WEl Xiaojie, FAN Tailiang. A review on sedimentary processes of marine mudstones and shales[J]. Acta Geologica Sinica, 2021, 39(1): 73-87. doi: 10.14027/j.issn.1000-0550.2020.131 [41] MASSON D G, HARBITZ C B, WYNN R B, et al. Submarine landslides: Processes, triggers and hazard prediction[J]. Philos Trans A Math Phys Eng Sci, 2006, 364: 29-39. doi: 10.1098/rsta.2006.1810 [42] SHANMUGAM G. New perspectives on deep-waters and stones: Implications[J]. Petroleum Exploration and Development, 2013, 40(3): 316-324. doi: 10.1016/S1876-3804(13)60038-5 [43] SHANMUGAM G. High-density turbidity currents: Are they sandy debris flows?[J]. Journal of Sedimentary Research, 1996, 66(1): 2-10. doi: 10.1306/D426828E-2B26-11D7-8648000102C1865D [44] 杨田,操应长,王健,等. 陆相湖盆深水浊流与泥质碎屑流间过渡流沉积与沉积学意义[J]. 沉积学报, 2023, 41(5): 1295-1310. doi: 10.14027/j.issn.1000-0550.2022.083 YANG Tian, CAO Yingchang, WANG Jian, et al. Deepwater deposition for transitional flow from turbidity current to muddy debris flow in lacustrine basins and its sedimentological significance[J]. Acta Sedimentologica Sinica, 2023, 41(5): 1295-1310. doi: 10.14027/j.issn.1000-0550.2022.083 [45] ZENK W. Abyssal and contour currents[J]. Developments in Sedimentology, 2008, 60: 37-57. [46] 李华,何明薇,邱春光,等. 深水等深流与重力流交互作用沉积(20002022)研究进展[J]. 沉积学报, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027 LI Hua, HE Mingwei, QIU Chunguang, et al. Research processes on deep-water interaction between contour currentand gravity flow deposits, 2000 to 2022[J]. Acta Geologica Sinica, 2023, 41(1): 18-36. doi: 10.14027/j.issn.1000-0550.2022.027 [47] 施振生,周天琪. 海相细粒沉积成因机制与有机质富集模式研究进展[J]. 石油与天然气地质, 2024, 45(4): 910-928. doi: 10.11743/ogg20240403 SHl Zhensheng, ZHOU Tianqi. Advances and perspectives in the study of the genetic mechanism and organic matter enrichment models of marine fine-grained sediment[J]. Oil & Gas Geology, 2024, 45(4): 910-928. doi: 10.11743/ogg20240403 [48] SCHIEBER J. Mud re-distribution in epicontinental basins: Exploring likely processes[J]. Marine and Petroleum Geology, 2016, 71: 119-133. doi: 10.1016/j.marpetgeo.2015.12.014 [49] RODRIGUES S, HERN′ANDEZ-MOLINA F J, FONNESU M, et al. A new classification system for mixed (turbidite-contourite) depositional systems: Examples, conceptual models and diagnostic criteria for modern and ancient records[J]. Earth-Science Reviews, 2022, 230: 104030. doi: 10.1016/j.earscirev.2022.104030 [50] SHANMUGAM G, SPALDING T D, ROFHEART D H. Process sedimentology and reservoir quality of deep-marine bottom-current reworked sands (sandy contourites): An example from the Gulf of Mexico[J]. AAPG Bulletin, 1993, 77: 1241-1259. [51] 龚承林,王英民. 深海重力流与底流交互作用[M]. 北京:科学出版社, 20-23. GONG Chenglin, WANG Yingmin. Interaction between deep-sea gravity flow and bottom current[M]. Beijing: Science Press, 2023. [52] 蔡进功,郭志刚,李从先,等. 水体中有机质的类型与有机质沉积作用[J]. 同济大学学报(自然科学版), 2005, 33(9): 1213-1218. doi: 10.3321/j.issn:0253-374X.2005.09.014 CAI Jingong, GUO Zhigang, LI Congxian, et al. Types of organic matter in water and organic sedimentary processes[J]. Journal of Tongji University (Natural Science), 2005, 33(9): 1213-1218. doi: 10.3321/j.issn:0253-374X.2005.09.014 |