[1] REBESCO M, HERNÁNDEZ-MOLINA F J, VAN R D, et al. Contourites and associated sediments controlled by deep-water circulation processes:State-of-the-art and future considerations[J]. Marine Geology, 2014, 352:111-154. doi:10.1016/j.margeo.2014.03.011 [2] GONG Chenglin, WANG Yingmin, ZHU Weilin, et al. Upper Miocene to Quaternary unidirectionally migrating deep-water channels in the Pearl River Mouth Basin, northern South China Sea[J]. AAPG Bulletin, 2013, 97(2): 285-308. doi:10.1306/07121211159 [3] GONG Chenglin, WANG Yingmin, REBESCO M, et al. How do turbidity flows interact with contour currents in unidirectionally migrating deep-water channels[J]. Geology, 2018, 46(6): 551-554. doi:10.1130/G40204.1 [4] PALERMO D, GALBIATI M, FAMIGLIETTI M, et al. Insights into a new super-giant gas field-sedimentology and reservoir modeling of the coral reservoir complex, offshore northern Mozambique[C]. Malaysia:Offshore Technology Conference Asia, 2014. [5] KNUTZ P C. Palaeoceanographic significance of contourite drifts[J]. Developments in Sedimentology, 2001, 60:511-535. [6] MIRAMONTESE,GARZIGLIAS,SULTANN,et al. Morphological control of slope instability in contourites:A geotechnical approach[J]. Landslides, 2018, 15(6): 1085-1095. doi:10.1007/s10346-018-0956-6 [7] MOSHER D C, CAMPBELL D C, GARDNER J V, et al. The role of deep-water sedimentary processes in shaping a continental margin:The northwest Atlantic[J]. Marine Geology, 2017, 393(1): 245-259. doi:10.1016/j.margeo.2017.08.018 [8] 李华,王英民,徐强,等.南海北部珠江口盆地重力流 与等深流交互作用沉积特征、过程及沉积模式[J].地 质学报, 2014, 88(6): 1120 1129. LI Hua, WANG Yingmin, XU Qiang, et al. Sedimentary characteristics, processes and sedimentary models of interaction between gravity flow and isodeep flow in the Pearl River Estuary Basin, northern South China Sea[J]. Acta Geologica Sinica, 2014, 88(6): 1120-1129. [9] 陈宇航,姚根顺,吕福亮,等.东非鲁伍马盆地深水 区构造-沉积演化过程及油气地质特征[J].海相油 气地质, 2016, 21(2): 39-46. doi:10.3969/j.issn.1672-9854.2016.02.005 CHEN Yuhang, YAO Genshun, LÜ Fuliang, et al. Tectono-sedimentary evolution and hydrocarbon geological characteristics in the deep water area of the Ruvuma Basin, East Africa[J]. Marine Petroleum Geology, 2016, 21(2): 39-46. doi:10.3969/j.issn.1672-9854.2016.02.005 [10] CHEN Yuhang, YAO Genshun, WANG Xiaofeng, et al. Flow processes of the interaction between turbidity flows and bottom currents in sinuous unidirectionally migrating channels:An example from the Oligocene channels in the Rovuma Basin, offshore Mozambique[J]. Sedimentary Geology, 2020, 404:105680. doi:10.1016/j.sedgeo.2020.105680 [11] FONNESU M, PALERMOB D, GALBIATI M, et al. A new world-class deep-water play-type, deposited by the syndepositional interaction of turbidity flows and bottom currents:The giant Eocene Coral Field in northern Mozambique[J]. Marine and Petroleum Geology, 2020, 111:179-201. doi:10.1016/j.marpetgeo.2019.07.047 [12] 张佳佳,吴胜和,王瑞峰,等.东非鲁伍马盆地深水X 气藏海底扇储层构型研究:重力流底流交互作用 指示意义[J].古地理学报, 2023, 25(1): 163-179. doi: 10.7605/gdlxb.2023.01.011 ZHANG Jiajia, WU Shenghe, WANG Ruifeng, et al. Study on subsea fan reservoir configuration of deepwater X gas reservoir in Ruvuma Basin, East Africa:Indicative significance of gravity flow and bottom flow interaction[J]. Journal of Palaeogeography, 2023, 25(1): 163-179. doi: 10.7605/gdlxb.2023.01.011 [13] AZPIROZ-ZABALA M, CARTIGNY M J, TALLING P J, et al. Newly recognized turbidity current structure can explain prolonged flushing of submarine canyons[J]. Science, 2017, 3(10): 1700200. doi:10.1126/sciadv.1700200 [14] LEEUW J D, EGGENHUISEN J T, CARTIGNY J B. Morphodynamics of submarine channel inception revealed by new experimental approach[J]. Nature Communications, 2016, 7(1): 10886. [15] SEQUEIROS O E. Estimating turbidity current conditions from channel morphology:A froude number approach[J]. Journal of Geophysical Research Oceans, 2012, 117:C04003. doi:10.1029/2011JC007201 [16] MIRAMONTES E, EGGENHUISEN J T, JACINTO R S, et al. Channel-levee evolution in combined contour current turbidity current flows from flume-tank experiments[J]. Geology, 2020, 4(48): 353-357. doi:10.1130/G47111.1 [17] 孙辉,范国章,邵大力,等.深水局部限制性水道复 合体沉积特征及对储层的影响——以东非鲁伍马盆地始新统为例[J].石油与天然气地质, 2021, 42(6): 1440-1450. doi:10.11743/ogg20210618 SUN Hui, FAN Guozhang, SHAO Dali, et al. Depositional characteristics of locally restricted channel complex in deep water and its influence on reservoir properties:A case study of the Eocene series, Rovuma Basin[J]. Oil& Gas Geology, 2021, 42(6): 1440-1450. doi:10.11743/ogg-20210618 [18] LEDESMA D. East Africa gas-potential for export[R]. London:University of Oxford, 2013. [19] 孙辉,范国章,王红平,等.东非鲁伍马盆地中始新统 深水沉积特征及层序界面识别方法[J].岩性油气藏, 2023, 35(6): 106-116. doi:10.12108/yxyqc.20230612 SUN Hui, FAN Guozhang, WANG Hongping, et al. Sedimentary characteristics and sequence boundary identification methods of deep water in the Middle Eocene in the Ruvuma Basin, East Africa[J]. Lithologic Oil-Gas Reservoir, 2023, 35(6): 106-116. doi:10.12108/yxyqc.20230612 [20] MAHANJANE E S, FRANKE D. The Ruvuma delta deep-water fold-and-thrust belt, offshore Mozambique[J]. Tectonophysics, 2014, 614(3): 91-99. [21] 孙辉,吕福亮,范国章,等.三级层序内受底流影响的 富砂深水沉积演化规律:以东非鲁武马盆地中中新统 为例[J].天然气地球科学, 2017, 28(1): 106-115. doi: 10.11764/j.issn.1672-1926.2016.11.024 SUN Hui, LÜ Fuliang, FAN Guozhang, et al. Evolution of sand-rich deep-water sediments influenced by undercurrent in third-order sequences:A case study of the Middle Miocene in the Luvuma Basin, East Africa[J]. Natural Gas Geoscience, 2017, 28(1): 106-115. doi:10.11764/j.issn.1672-1926.2016.11.024 [22] DE RUIJTER W P, RIDDERINKHOF H, LUTJEHARMS J R, et al. Observations of the flow in the Mozambique channel[J]. Geophysical Research Letters, 2001, 29(10): 1401-1403. doi:10.1029/2001GL013714 [23] SIMPSON J E. Mixing at the front of a gravity current[J]. Acta Mechanica, 1986, 63(1): 245-253. doi:10.1007/BF-01182551 [24] WELLS M G, DORRELL R M. Turbulence processes within turbidity currents[J]. Annual Review of Fluid Mechanics, 2021, 53(1): 59-83. doi:10.1146/annurev-fluid-010719-060309 [25] MEIBURG E, KNELLER B. Turbidity currents and their deposits[J]. Annual Review of Fluid Mechanics, 2009, 42(1): 135-156. [26] GEORGOULAS A N, ANGELIDIS P B, PANAGIOTIDIS T G, et al. 3D numerical modelling of turbidity currents[J]. Environmental Fluid Mechanics, 2010, 10(6): 603-635. doi:10.1007/s10652-010-9182-z [27] HINZE J O. Turbulence[M]. New York:McGraw-Hill Publishers, 1975. [28] 姜涛,解习农,汤苏林.浊流形成条件的水动力学 模拟及其在储层预测方面的作用[J].地质科技情 报, 2005(2): 1-6. doi:10.3969/j.issn.1000-7849.2005.02.001 JIANG Tao, XIE Xinong, TANG Sulin. Hydrodynamic simulation of turbidity current formation conditions and its role in reservoir prediction[J]. Geological Science and Technology Information, 2005(2): 1-6. doi:10.3969/j.issn.1000-7849.2005.02.001 [29] 陈宇航,姚根顺,吕福亮,等.东非鲁伍马盆地渐新统 深水水道朵体沉积特征及控制因素[J].石油学报, 2017, 38(9): 1047-1058. doi:10.7623/syxb201709006 CHEN Yuhang, YAO Genshun, LÜ Fuliang, et al. Sedimentary characteristics and controlling factors of oligocene deep water channel-lobes in the Ruvuma Basin, East Africa[J]. Acta Petrolei Sinica, 2017, 38(9): 1047-1058. doi:10.7623/syxb201709006 [30] HEEREMA C J, TALLING P J, CARTIGNY M J, et al. What determines the downstream evolution of turbidity currents?[J]. Earth and Planetary Science Letters, 2020, 532:116023. doi:10.1016/j.epsl.2019.116023 [31] STRAUB K M, MOHRIG D, BUTTLES J, et al. Quantifying the influence of channel sinuosity on the depositional mechanics of channelized turbidity currents:A laboratory study[J]. Marine and Petroleum Geology, 2011, 28(3): 744-760. doi:10.1016/j.marpetgeo.2010.05.014 [32] BREITZKE M, JOKAT W, KROCKER R, et al. Highresolution bathymetry and shallow acoustic images of current-controlled sedimentary processes in the Southern Mozambique Channel[C]. Vienna:Egu General Assembly, 2011. [33] 汪新光,张辉,陈之贺,等.琼东南盆地陵水区中央峡 谷水道沉积数值模拟[J].地质科技通报, 2021, 40(5): 42-53. doi:10.19509/j.cnki.dzkq.2021.0026 WANG Xinguang, ZHANG Hui, CHEN Zhihe, et al. Lingshui Area in the basin in the southeast central valley channel sedimentary numerical simulation[J]. Journal of Geological Science Bulletin, 2021, 40(5): 42-53. doi: 10.19509/j.cnki.dzkq.2021.0026 [34] PEAKALL J, MCCAFFREY B, KNELLER B. A process model for the evolution, morphology, and architecture of sinuous submarine channels[J]. Journal of Sedimentary Research, 2000, 70(3): 434-448. doi:10.1306/2DC4091C-0E47-11D7-8643000102C1865D [35] PIRMEZ C, IMRAN J. Reconstruction of turbidity currents in Amazon Channel[J]. Marine and Petroleum Geology, 2003, 20(6): 823-849. doi:10.1016/j.marpetgeo.2003.03.005 [36] PEAKALL J, KANE I A, MASSON D G, et al. Global (latitudinal) variation in submarine channel sinuosity[J]. Geology, 2013, 41(5): e287. [37] COSSU R, WELLS M G. Latitudinal variations in submarine channel sedimentation patterns:The role of Coriolis forces[J]. Journal of the Geological Society, 2015, 172(2): 161-174. doi:10.1144/jgs2014-043 [38] SETON M, MÜLLER R D, ZAHIROVIC S, et al. Global continental and ocean basin reconstructions since 200 Ma[J]. Earth-Science Reviews, 2012, 113(3): 212-270. doi:10.1016/j.earscirev.2012.03.002 [39] ENGELUND F. Flow and bed topography in channel bends[J]. Journal of the Hydraulics Division, 1974, 100: 1631-1648. [40] JOHANNESSON H, PARKER G. Velocity redistribution in meandering rivers[J]. Journal of Hydraulic Engineering, 1989, 115(8): 1019-1039. [41] BRIDGE J S. A revised model for water flow, sediment transport, bed topography and grain size sorting in natural river bends[J]. Water Resources Research, 1992, 28(4): 999-1013. doi:10.1029/91WR03088 [42] IMRAN J, ISLAM M A, HUANG H Q, et al. Helical flow couplets in submarine gravity underflows[J]. Geology, 2007, 35(7): 659-662. doi:10.1130/G23780A.1 [43] KASSEM A, IMRAN J. Three-dimensional modeling of density current II. Flow in sinuous confined and uncontined channels[J]. Journal of Hydraulic Research, 2004, 42(6): 591-602. doi:10.1080/00221686.2004.9628313 [44] CORNEY R K T, PEAKALL J, PARSONS D R, et al. The orientation of helical flow in curved channels[J]. Sedimentology, 2010, 53(2): 249-257. [45] PEAKALL J, SUMNER E J. Submarine channel flow processes and deposits:A process-product perspective[J]. Geomorphology, 2015, 244(1): 95-120. doi:10.1016/j.geomorph.2015.03.005 [46] SMITH J D, MCLEAN S R. A model for flow in meandering streams[J]. Water Resources Research, 1984, 20(9): 1301-1315. doi:10.1029/WR020i009p01301 [47] ARNOTT R, TILSTON M, FRAINO P, et al. Laterally accreting sinuous channels and their deposits:The goldilocks of deep-water slope systems[J]. Journal of Sedimentary Research, 2021, 91(5): 451-463. doi:10.2110/jsr.2020.144 [48] SHAHEED R, MOHAMMADIAN A, YAN X. A review of numerical simulations of secondary flows in river bends[J]. Water, 2021, 13(7): 884. doi:10.3390/w13070884 [49] GONG C L, WANG Y M, STEEL R J, et al. Flow processes and sedimentation in unidirectionally migrating deepwater channels:From a three-dimensional seismic perspective[J]. Sedimentology, 2016, 63(3): 645-661. doi: 10.1111/sed.12233 [50] POHL F, EGGENHUISEN J T, TILSTON M, et al. New flow relaxation mechanism explains scour fields at the end of submarine channels[J]. Nature Communications, 2019, 10(1): 4425. |