大理大学学报 ›› 2019, Vol. 4 ›› Issue (12): 12-17.

• 数学与计算机科学 • 上一篇    下一篇

粒子群算法的一种改进算法

  

  1. 电子科技大学成都学院文理系,成都611731
  • 收稿日期:2019-05-31 出版日期:2019-12-15 发布日期:2019-12-15
  • 作者简介:张倩,助教,主要从事应用数学研究.

An Improved Algorithm of Particle Swarm Optimization

  1. Department of Arts and Science, Chengdu College of University of Electronic Science and Technology of China,
    Chengdu 611731, China
  • Received:2019-05-31 Online:2019-12-15 Published:2019-12-15

摘要: 标准粒子群算法被广泛地应用于鸟群觅食研究,是一种群智能算法,但是其存在早熟收敛、收敛精度比较低的缺点,因
而进一步提升标准粒子群算法的性能和拓展实用性是亟须解决的问题。针对以上缺点,通过模拟人类获取信息的三大类圈
子:“邻里圈”“朋友圈”“媒体”对标准粒子群算法进行了两方面的改进,一方面通过“邻里圈”粒子位置的加权平均增强了粒子
之间的信息交流,另一方面将粒子按照“朋友圈”进行分组,充分利用了“经验多”粒子的搜索能力,从而较好地改进了算法,并
选取二维Girewank函数、Rosenbrock函数和Schwefel函数作为测试函数,将改进算法和标准粒子群算法进行了对比,证明了改
进算法的优越性。

关键词: 粒子群算法, 群智能算法, 改进, 信息交流, 经验

Abstract: The standard particle swarm optimization algorithm(PSO)is widely used in bird foraging research. It is a group intelligence
algorithm, but it has the disadvantages of premature convergence and low convergence precision. To further improve the performance
and extension practicability of the standard particle swarm optimization algorithm is an urgent problem in need to be solved. In
response to the above shortcomings, by simulating the three types of circles that human access information, i. e. "neighborhood circle",
"friend circle" and "media", the present research has improved the standard particle swarm algorithm in two ways. On the one hand,
the information exchange between particles is enhanced through weighted averaging of the particle position of the "neighborhood
circle". On the other hand, by grouping the particles according to the "friend circle", and making full use of the search ability of
"experienced" particles, the algorithm is better improved. In addition, the two-dimensional Girewank function, Rosenbrock function
and Schwefel function are used as test functions to compare the improved algorithm with the standard PSO algorithm, which proves the
superiority of the improved algorithm.

Key words: particle swarm optimization, swarm intelligence algorithm, improvement, information exchange, experience