大理大学学报

• 数学与计算机科学 • 上一篇    下一篇

一种微型昆虫图像智能识别方法

  

  1. 大理大学数学与计算机学院,云南大理671003
  • 收稿日期:2020-03-17 出版日期:2020-06-15 发布日期:2020-06-15
  • 作者简介:罗桂兰,副教授,主要从事物联网、智能生态研究。
  • 基金资助:
    国家自然科学基金项目(61661001);云南省地方本科高校(部分)基础研究联合专项资金项目(2018FH001-057);
    国家级大学生创新创业训练计划项目(201810679038)

An Intelligent Recognition Method for Micro-Insect Images

  1. (College of Mathematics and Computer, Dali University, Dali, Yunnan 671003, China)
  • Received:2020-03-17 Online:2020-06-15 Published:2020-06-15

摘要: 因洱海湿地昆虫具有形态微小、不易识别的特点,为提高昆虫数据智能化处理和分类效率,设计了一种微小昆虫智能
识别方法。该方法通过SVM-AdaBoost机器学习模型实现了昆虫图像的分类学习,并基于IOS移动平台,采用MVC(Model
View Controller)设计模式,使用Swift语言编写了昆虫图片的获取、显示、识别等功能。通过真机实时性能测试表明该方法具有
良好的可靠性,满足了智能化的实时性要求。通过昆虫图像识别效果评估,结果表明该方法能够智能识别湿地微型昆虫,其识
别精确度和回调率达到了92%,准确率达到了91%。

null

关键词: 昆虫图像处理, 智能分类识别, 支持向量机, AdaBoost算法, 准确率

Abstract: Insects in the wetlands of Erhai Lake are small and difficult to identify. In order to improve the efficiency of intelligent
insect data processing and classification, an intelligent insect identification method was designed for the Erhai Lake wetland insects.
The method realizes insect image classification learning through SVM-AdaBoost machine learning model. Based on IOS mobile
platform, this paper adopts MVC(Model View Controller)design pattern and uses Swift language to realize the functions of insect
image acquisition, display, recognition and so on. The real-time performance test shows that the method has good reliability and meets
the real-time requirement of intelligence. Through the evaluation of insect image recognition, the result shows that the algorithm can
recognizewetlandmicro-insectsintelligently.Itsrecognitionaccuracyandcallbackratereached 92%,andtheaccuracyratereached 91%.

Key words: insect image processing, intelligent classification and recognition, support vector machine, AdaBoost algorithm, accuracy

中图分类号: