大理大学学报 ›› 2022, Vol. 7 ›› Issue (12): 20-24.
• 数学与计算机科学 • 上一篇 下一篇
(大理大学数学与计算机学院,云南大理 671003)
收稿日期:
出版日期:
发布日期:
作者简介:
A Branch and Bound Algorithm to Solve Express Vehicle Assembling Problem
(College of Mathematics and Computer, Dali University, Dali, Yunnan 671003,China)
Received:
Online:
Published:
摘要:
快递车辆配装问题是指车辆在各快递站点进行货物配送时将价值尽可能大的揽收货物带回配送中心。提出一种求解该问题的带限界函数分支限界算法,搜索树中待处理结点用堆结构存储,结点中存储搜索路径,用设定的搜索下界进行搜索树剪枝,实验结果验证了该算法的有效性。
关键词: 快递车辆配装问题, 背包问题, 分支限界算法
Abstract:
Express vehicle assembling problem refers to the fact that vehicles bring the goods with the greatest value back to the distribution center when delivering goods at each express station. A branch and bound algorithm with bound function is proposed to solve the problem. The nodes to be processed in the search tree are stored in a heap structure, and the search paths are stored in the nodes. The lower bound of search is used to prune the search tree, and the experimental results verify the effectiveness of the algorithm.
Key words: express vehicle assembling problem, knapsack problem, branch and bound algorithm
express vehicle assembling problem,
中图分类号:
TP312
赵秦怡, 赵榆琴. 求解快递车辆配装问题分支限界算法[J]. 大理大学学报, 2022, 7(12): 20-24.
Zhao Qinyi, Zhao Yuqin.
A Branch and Bound Algorithm to Solve Express Vehicle Assembling Problem [J]. Journal of Dali University, 2022, 7(12): 20-24.
0 / / 推荐
导出引用管理器 EndNote|Ris|BibTeX
链接本文: http://journal15.magtechjournal.com/Jwk_dlxyzk/CN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/CN/Y2022/V7/I12/20
〔1〕 FEDERICO D C, ULRICH P, ROSARIO S. Appro-ximating the 3-period Incremental Knapsack Problem〔J〕. Journal of Discrete Algorithms, 2018,52/53:55-69.
〔2〕 刘雪静,贺毅朝,路凤佳,等.基于差分演化策略的混沌乌鸦算法求解折扣{0-1}背包问题〔J〕. 计算机应用,2018,
38(1):137-145.
〔3〕 DELL'AMICO M, DELORME M,IORI M, et al. Mathe-matical Models and Decomposition Methods for the Multiple Knapsack Problem〔J〕. European Journal of Operational Research,2019,274(3):886-899.
〔4〕 杨雪,董红斌,董宇欣.改进的量子粒子群优化算法对多维多选择背包问题的求解〔J〕. 吉林大学学报(理学版),2018,56(6):1461-1468.
〔5〕 HAN X, KAWASE Y, MAKINO K. Randomized Algori-thms for Online Knapsack Problems〔J〕. Theoretical Com-puter Science,2015,562(C):395-405.
〔6〕 苏兵,任宏光,周佳其,等.可卸货的移动在线背包问题模型和算法〔J〕. 运筹与管理,2021,30(5):1-5.
〔7〕 贺毅朝,田海燕,张新禄,等.基于动态规划法求解动态0-1背包问题〔J〕. 计算机科学,2012,39(7):237-241.