大理大学学报 ›› 2023, Vol. 8 ›› Issue (12): 15-21.

• 数学与计算机科学 • 上一篇    下一篇

基于指定特征的加权 co-location 模式挖掘方法

  

  1. (大理大学数学与计算机学院,云南大理 671003)
  • 收稿日期:2023-04-04 出版日期:2023-12-15 发布日期:2024-01-07
  • 作者简介:赵秦怡,副教授,主要从事空间数据挖掘算法研究。

Weighted Co-Location Pattern Mining Method Based on Specified Features 

  1. (College of Mathematics and Computer, Dali University, Dali, Yunnan 671003, China)
  • Received:2023-04-04 Online:2023-12-15 Published:2024-01-07

摘要: co-location 模式是空间特征集的一个子集,其特征实例在地理空间中频繁出现互 相近邻,基于特征参与率进行模式挖掘,特征参与率定义为模式表实例中不重复的实例个数与特征总实例数的比率。针对基于指定特征的模式特征实例并置程度满足模式指导性要求, 但部分特征总实例数过多而导致特征参与率小于阈值,模式被界定为非频繁模式的情况,提 出一种基于指定特征的加权 co-location 模式挖掘方法。定义特征的权以及特征加权参与率计 算规则,可以有效挖掘基于指定特征的加权 co-location 模式,其加权参与度随着模式阶数的 增大而单调递减。实验结果证明了该算法在挖掘结果及算法运行时间上的有效性。

关键词: 空间数据挖掘, co-location 模式挖掘, 加权参与率, 星型邻居模型, 模式并置 值

Abstract: A co-location pattern is a subset of spatial feature set whose feature instances frequently appear in proximity in geographic space. Pattern mining is carried out based on the feature participation rate, which is defined as the radio of the number of unique instances in the pattern table to the total number of feature instances. A weighted co-location pattern mining method based on specified features is proposed to address the situation where the degree of concatenation of pattern feature instances based on specified features satisfies the pattern guidance requirements, but some features have too many total instances leading to a feature participation rate below the threshold, and the pattern is defined as a non-frequent pattern. The proposed method defines the weight of features and the calculation rules of weighted participation rate, which can effectively mine weighted co-location patterns based on specified features, and the weighted participation degree decreases monotonically with the increase of the pattern order. The experimental results indicate the effectiveness of the algorithm in terms of mining results and algorithm runtime. 

Key words: spatial data mining; co-location pattern mining; weighted participation rate; star-neighbor model; mode collocation value 

中图分类号: