大理大学学报 ›› 2024, Vol. 9 ›› Issue (12): 51-57.

• 物理学 • 上一篇    下一篇

基于RetinaFace和FaceNet算法的佩戴口罩人脸识别系统研究

  

  1. (大理大学工程学院,云南大理 671003)
  • 收稿日期:2023-05-26 出版日期:2024-12-15 发布日期:2024-12-17
  • 通讯作者: 赵恩铭,教授,博士,E-mail:zhaoem163@163.com。
  • 作者简介:裴燚,硕士研究生,主要从事机器视觉、深度学习研究。
  • 基金资助:
    云南省教育厅科学研究基金项目(2023Y1043;2023Y1044);云南省中青年学术和技术带头人后备人才项目
    (202205AC160001);大理大学第八期教育教学改革研究项目(2022JGY08-24);大理大学党建工作研究课题
    (DJYJ2022011)

Masks-Wearing Face Recognition System Based on RetinaFace and FaceNet Algorithms

  1. (College of Engineering, Dali University, Dali, Yunnan 671003, China)
  • Received:2023-05-26 Online:2024-12-15 Published:2024-12-17

摘要: 在疫情暴发期间,佩戴口罩已成为一项重要的公共防疫措施。但口罩遮盖会导致基于图像的人脸识别系统识别准确
率降低、检测速度变慢。本研究设计了一种基于RetinaFace和FaceNet算法的佩戴口罩人脸识别系统。首先,使用RetinaFace
算法训练得到RetinaFace模型,实现人脸关键点定位功能;其次,采用FaceNet算法训练得到FaceNet模型,提取人脸特征向量
并构建特征数据库;最后,通过比对待识别人脸特征向量与数据库中向量的欧氏距离,输出识别结果。实验结果表明,该系统
在RKNN模型转换后的识别速度超过25 f/s,在数据集Mask-LFW上,特征向量间欧氏距离阈值设定为1.01时,ACC最高达
93.78%,AUC为91.03%。该系统满足实时性且具有较高的检测准确率,可满足实验室、公司、工厂或一些公共场所的使用需求。

关键词: 人脸识别, RetinaFace, FaceNet, RKNN模型转换

Abstract: During the epidemic outbreak, wearing masks has become an important public epidemic prevention measure. However, masks will lead to a reduction in recognition accuracy and a slowdown in detection speed of image-based face recognition systems. This study designs a masks-wearing face recognition system based on RetinaFace and FaceNet algorithms. First, the RetinaFace algorithm
is used to train the RetinaFace model to realize the face key point positioning function. Secondly, the FaceNet algorithm is used to train
the FaceNet model to extract the face feature vector and build a feature database. Finally, by comparing a Euclidean distance between
the facial feature vector to be recognized and the vectors in the database, the recognition result is output. The experimental results show that the recognition speed of the system after RKNN model conversion exceeds 25 f/s. On the dataset Mask-LFW, when the Euclidean distance threshold between feature vectors is set to 1.01, the ACC is up to 93.78%, and the AUC is 91.03%. The system meets realtime requirements and has high detection accuracy, which can be used in laboratories, company offices, factories and some public places.

Key words: face recognition, RetinaFace, FaceNet, RKNN model conversion

中图分类号: