大理大学学报 ›› 2025, Vol. 10 ›› Issue (12): 24-31.

• 数学与计算机科学 • 上一篇    下一篇

基于实例分布的高平均效用同位模式挖掘

  

  1. 大理大学数学与计算机学院,云南大理 671003
  • 出版日期:2025-12-15 发布日期:2026-01-16
  • 作者简介:赵秦怡,副教授,主要从事数据挖掘算法研究。

Mining of High Average-Utility Co-Location Patterns Based on Instance Distribution

  1. College of Mathematics and Computer Science, Dali University, Dali, Yunnan 671003, China
  • Online:2025-12-15 Published:2026-01-16

摘要: 高效用同位模式是指具有良好指导性及应用驱动的同位模式,其挖掘基于数据集特征带效用值或实例带效用值。由研究可知特征参与实例和邻居实例之间的距离分布、参与实例形成的并置实例体现了特征参与实例在模式中的效用。为此,本研究定义了参与实例基于行实例效用、参与实例模式效用、特征平均参与效用及模式平均参与效用的度量方法,并提出一种基于实例分布的高平均效用同位模式挖掘算法。分别用合成数据集和真实数据集验证了算法的有效性,结果显示,该算法可挖掘具有实例参与频繁性、重要性及良好距离分布的同位模式,但会丢失少量低效用的同位模式。

关键词: 同位模式, 高平均效用同位模式, 特征平均参与效用, 模式平均参与效用

Abstract: High-utility co-location patterns refer to those with strong instructive value and application-driven potential. Its extraction is based on utility values associated with dataset features or with individual instances. Research indicates that the distance
distribution between feature-participating instances and neighboring instances, as well as the co-located instances formed by
participating instances, reflect the utility of feature-participating instances in the pattern. Therefore, this study defines metrics for instance participation based on row instance utility, instance participation pattern utility, feature average participation utility, and pattern average participation utility, and proposes an algorithm for mining high average-utility co-location patterns based on instance distribution. The algorithm′s effectiveness is validated using both synthetic and real-world datasets, demonstrating its ability to uncover co-location patterns with high instance participation frequency, importance, and favorable distance distribution. However, it may miss a small number of co-location patterns with lower utility.

Key words: co-location pattern, high average-utility co-location pattern, feature average participation utility, pattern average
participation utility

中图分类号: