[1] WESTERGAARD H M. Plastic state of stress around a deep well[J]. Elasticity, 1940, 27:1-5. [2] ZHANG Jincai. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60:160-170. doi:10.1016/j.ijrmms.2012.12.025 [3] 施斌. 论工程地质中的场及其多场耦合[J]. 工程地质学报,2013,21(5):673-680. doi:10.3969/j.issn.1004-9665.2013.05.001 SHI Bin. On fields and their coupling in engineering geology[J]. Journal of Engineering Geology, 2013, 21(5):673-680. doi:10.3969/j.issn.1004-9665.2013.05.001 [4] REISABADI Z, KAFFASH A, SHADIZADEH S R. Determination of optimal well trajectory during drilling and production based on borehole stability[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 56:77-87. doi:10.1016/j.ijrmms.2012.07.018 [5] 徐四龙,余维初,张颖. 泥页岩井壁稳定的力学与化学耦合(协同)作用研究进展[J]. 石油天然气学报, 2014,36(1):151-153. doi:10.3969/j.issn.1000-9752.-2014.01.032 XU Silong, YU Weichu, ZHANG Ying. Research progress of mechanic and chemical coupling for shale wellbore stability[J]. Journal of Oil and Gas Technology, 2014, 36(1):151-153. doi:10.3969/j.issn.1000-9752.2014.01.032 [6] FJAR E, HOLT R M, RAAEN A M, et al. Petroleum related rock mechanics[M]. 2nd ed. Elsevier, 2008. [7] 楼一珊,金业权. 岩石力学与石油工程[M]. 北京:石油工业出版社,2006. LOU Yishan, JIN Yequan. Rock mechanics and petroleum engineering[M]. Beijing:Petroleum Industry Press, 2006. [8] 申瑞臣,屈平,杨恒林. 煤层井壁稳定技术研究进展与发展趋势[J]. 石油钻探技术,2010,38(3):1-7. doi:10.3969/j.issn.1001-0890.2010.03.001 SHEN Ruichen, QU Ping, YANG Henglin. Advancement and development of coal bed wellbore stability technology[J]. Petroleum Drilling Techniques, 2010, 38(3):1-7. doi:10.3969/j.issn.1001-0890.2010.03.001 [9] JIN Yan, CHEN Kangping, CHEN Mian. Development of tensile stress near a wellbore in radial porous media flows of a high pressure gas[J]. International Journal of Rock Mechanics & Mining Sciences, 2011, 48:1313-1319. doi:10.1016/j.ijrmms.2011.09.013 [10] HONG Wang, TOWLER B F, SOLIMAN M Y. Fractured wellbore stress analysis:Sealing cracks to strengthen a wellbore[C]. SPE 104947, 2007. doi:10.2118/104947-MS [11] ZHANG Jincai, BAI Mao, ROEGIERS J C. On drilling directions for optimizing horizontal well stability using a dual-porosity poroelastic approach[J]. Journal of Petroleum Science and Engineering, 2006, 53:61-76. doi:10.1016/j.petrol.2006.02.001 [12] CROOK T, WILLSON S, YU Jianguo, et al. Computational modeling of the localized deformation associated with borehole breakout in quasi-brittle materials[J]. Journal of Petroleum Science and Engineering, 2003, 38:177-186. doi:10.1016/S0920-4105(03)00031-7 [13] SCHOENBALL M, SAHARA D P, KOHL T. Timedependent brittle creep as a mechanism for time-delayed wellbore failure[J]. International Journal of Rock Mechanics & Mining Sciences, 2014, 70:400-406. doi:10.1016/j.ijrmms.2014.05.012 [14] 卢运虎,陈勉,袁建波,等. 各向异性地层中斜井井壁失稳机理[J]. 石油学报,2013,34(3):563-568. doi:10.7623/syxb201303022 LU Yunhu, CHEN Mian, YUAN Jianbo, et al. Borehole instability mechanism of a deviated well in anisotropic formations[J]. Acta Petrolei Sinica, 2013, 34(3):563-568. doi:10.7623/syxb201303022 [15] BRADLEY W B. Mathematical concept-stress cloud can predict borehole failure[J]. Oil & Gas Journal, 1979, 77(8):92-102. [16] 张广清. 分支井筒稳定的塑性力学模型及分析[J]. 中国石油大学学报(自然科学版),2013,37(5):81-87. doi:10.3969/j.issn.1673-5005.2013.05.012 ZHANG Guangqing. Plastic mechanics model for wellbore stability analysis of branched wells[J]. Journal of China University of Petroleum, 2013, 37(5):81-87. doi:10.3969/j.issn.1673-5005.2013.05.012 [17] 张立松,闫相祯,杨秀娟,等. 基于Hoek-Brown准则的深部煤层钻井坍塌压力弹塑性分析[J]. 煤炭学报, 2013,38(1):85-90. ZHANG Lisong, YAN Xiangzhen, YANG Xiujuan, et al. Elasto-plastic analysis of collapse pressure for deep coal seam drilling based on Hoek-Brown criterion[J]. Journal of China Coal Society, 2013, 38(1):85-90. [18] LEE Y K. A nonlinear rock failure criterion taking account of the intermediate principal stress[C]. ISRM-ARMS 7-2012-027, 2012. [19] 张培丰. 地层温度对科学超深井井壁稳定的影响[J]. 探矿工程(岩土钻掘工程),2011,38(10):1-5. doi:10.3969/j.issn.1672-7428.2011.10.001 ZHANG Peifeng. Effect of the formation temperature on the hole-wall stability in ultra-deep scientific drilling[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2011, 38(10):1-5. doi:10.3969/j.issn.1672-7428.2011.10.001 [20] HODGE M O, VALENCIA K L, CHEN Zhixi. Analysis of time-dependent wellbore stability of underbalanced wells using a fully coupled poroelastic model[C]. SPE 102873, 2006. doi:10.2118/102873-MS [21] ABOUSLEIMAN Y, ROEGIERS J C, CUI L, et al. Poroelastic solution of an inclined borehole in a transversely isotropic medium[C]. USRMS 0313, 1995. [22] XU G, GUO Q, ZHENG Z. A finite element poro-inelastic analysis of borehole problems[J]. International Journal of Rock Mechanics & Mining Sciences, 1997, 34:342.e1-342.e10. doi:10.1016/S1365-1609(97)00258-X [23] MULLER A L, VARGAS E A, VAZ L E, et al. Borehole stability analysis considering spatial variability and poroelastoplasticity[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46:90-96. doi:10.1016/j.-ijrmms.2008.05.001 [24] WU Bailin, WU Bisheng, ZHANG Xi, et al. Wellbore stability analyses for HPHT wells using a fully coupled thermo-poroelastic model[C]. SPE 144978, 2011. doi:10.2118/144978-MS [25] HALE A H, MODY F K. The influence of chemical potential on wellbore stability[j]. spe drilling & completion, 1993, 8(3):207-216. doi:10.2118/23885-PA [26] YEW C H, CHENEVERT M E, WANG C L. Wellbore stress distribution produced by moisture adsorption[J]. SPE Drilling Engineering, 1990, 5(4):311-316. doi:10.2118/19536-PA [27] JAEGER J C, COOK N G W, ZIMMERMAN R. Fundamentals of rock mechanics[M]. John Wiley & Sons, 2009. [28] LEE H, ONG S H, AZEEMUDDIN M, et al. A wellbore stability model for formations with anisotropic rock strengths[J]. Journal of Petroleum Science and Engineering, 2012, 96:109-119. doi:10.1016/j.petrol.2012.08.-010 [29] ZOBACK M D. Reservoir geomechanics[M]. Cambridge University Press, 2010. [30] AADNOY B S. Modeling of the stability of highly inclined boreholes in anisotropic rock formations (includes associated papers 19213 and 19886)[J]. SPE Drilling Engineering, 1988, 3(3):259-268. doi:10.2118/16526-MS [31] 黄荣樽,陈勉,邓金根,等. 泥页岩井壁稳定力学与化学的耦合研究[J]. 钻井液与完井液,1995,12(3):15-21. HUANG Rongzun, CHEN Mian, DENG Jingen, et al. Study on shale stability of wellbore by mechanics coupling with chemistry method[J]. Drilling Fluid and Completion Fluid, 1995, 12(3):15-21. [32] 温航,陈勉,金衍,等. 硬脆性泥页岩斜井段井壁稳定力化耦合研究[J]. 石油勘探与开发,2014,41(6):748-754. doi:10.11698/PED.2014.06.16 WEN Hang, CHEN Mian, JIN Yan, et al. A chemomechanical coupling model of deviated borehole stability in hard brittle shale[J]. Petroleum Exploration and Development, 2014, 41(6):748-754. doi:10.11698/PED.2014.-06.16 [33] 张艳娜,孙金声,王强,等. 井壁稳定的化学动力学分析[J]. 断块油气田,2011,18(6):794-798. ZHANG Yanna, SUN Jinsheng, WANG Qiang, et al. Analysis on chemical kinetics of wellbore stability[J]. Fault-Block Oil & Gas Field, 2011, 18(6):794-798. [34] 邓虎,孟英峰. 泥页岩稳定性的化学与力学耦合研究综述[J]. 石油勘探与开发,2003,30(1):109-111. doi:10.3321/j.issn:1000-0747.2003.01.033 DENG Hu, MENG Yingfeng. A discussion on shale stability coupling with mechanics and chemistry[J]. Petroleum Exploration and Development, 2003, 30(1):109-111. doi:10.3321/j.issn:1000-0747.2003.01.033 [35] 何世明,尹成,徐壁华. 确定注水泥与钻井过程中井内循环温度的数学模型[J]. 天然气工业,2002,22(1):42-45. doi:10.3321/j.issn:1000-0976.2002.01.012 HE Shiming, YIN Cheng, XU Bihua, et al. Mathematical model of determining borehole circulating temperatures in cementing and drilling processes[J]. Natural Gas Industry, 2002, 22(1):42-45. doi:10.3321/j.issn:1000-0976.2002.-01.012 [36] 郤保平,赵阳升. 高温高压下花岗岩中钻孔围岩的热物理及力学特性试验研究[J]. 岩石力学与工程学报, 2010,29(6):1245-1253. XI Baoping, ZHAO Yangsheng. Experimental study of thermophysico-mechanical property of drilling surrounding rock in granite under high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6):1245-1253. [37] 赵金洲,彭瑀,李勇明,等. 基于双层非稳态导热过程的井筒温度场半解析模型[J]. 天然气工业,2016,36(1):68-75. doi:10.3787/j.issn.1000-0976.2016.01.008 ZHAO Jinzhou, PENG Yu, LI Yongming, et al. A semi-analytic model of wellbore temperature field based on double-layer unsteady heat conducting process[J]. Natural Gas Industry, 2016, 36(1):68-75. doi:10.3787/j.issn.1000-0976.2016.01.008 [38] CHEN G, CHENEVERT M E, SHARMA M M, et al. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects[J]. Journal of Petroleum Science and Engineering, 2003, 38(3):167-176. doi:10.1016/S0920-4105(03)00030-5 [39] NGUYEN D A, MISKA S Z, YU M, et al. Modeling thermal effects on wellbore stability[C]. SPE 133428, 2010. doi:10.2118/133428-MS [40] 魏臣兴,练章华,丁亮亮,等. 分支井渗流-应力耦合场分析[J]. 岩性油气藏,2011,23(4):124-128. WEI Chenxing, LIAN Zhanghua, DING Liangliang, et al. Analysis of seepage-stress coupling field for lateral wells[J]. Lithologic Reservoirs, 2011, 23(4):124-128. [41] GENTZIS T, DEISMAN N, CHALATURNYK R J. A method to predict geomechanical properties and model well stability in horizontal boreholes[J]. International Journal of Coal Geology, 2009, 78(2):149-160. doi:10.1016/j.-coal.2008.11.001 [42] 何世明,安文华,王书琪,等. 渗流对欠平衡钻井井壁稳定性的影响[J]. 石油钻采工艺,2008,30(4):12-16. HE Shiming, AN Wenhua, WANG Shuqi, et al. Effect of percolation on wellbore stability of underbalanced drilling[J]. Oil Drilling & Production Technology, 2008, 30(4):12-16. [43] 黄阜,杨小礼. 考虑渗透力和原始Hoek-Brown屈服准则时圆形洞室解析解[J]. 岩土力学,2010,31(5):1627-1632. doi:10.3969/j.issn.1000-7598.2010.05.048 HUANG Fu, YANG Xiaoli. Analytical solution of circular openings subjected to seepage in Hoek-Brown media[J]. Rock and Soil Mechanics, 2010, 31(5):1627-1632. doi:10.3969/j.issn.1000-7598.2010.05.048 [44] HE S, WANG W, TANG M, et al. Effects of fluid seepage on wellbore stability of horizontal wells drilled underbalanced[J]. Journal of Natural Gas Science and Engineering, 2014, 21:338-347. doi:10.1016/j.jngse.2014.08.016 [45] HE S, WANG W, SHEN H, et al. Factors influencing wellbore stability during underbalanced drilling of horizontal wells-When fluid seepage is considered[J]. Journal of Natural Gas Science and Engineering, 2015, 23:80-89. doi:10.1016/j.jngse.2015.01.029 [46] ISLAM M A, SKALLE P, FARUK A O, et al. Analytical and numerical study of consolidation effect on time delayed borehole stability during underbalanced drilling in shale[C]. SPE 127554, 2009. [47] LI L C, TANG C A, TANG S B, et al. Coupled thermo-hydro-mechanical analyses of thermal effects on fluid flow with 2D finite element method[C]. ISRM-ARMS5-2008-155, 2008. [48] GELET R, LORET B, KHALILI N. Borehole stability analysis in a thermoporoelastic dual-porosity medium[J]. International Journal of Rock Mechanics & Mining Sciences, 2012, 50:65-76. doi:10.1016/j.ijrmms.2011.12.-003 [49] 王炳印,蔚宝华,邓金根. 温度及渗流对疏松砂岩储层钻井液密度窗口的影响规律研究[J]. 钻井液与完井液,2005,22(4):40-42. doi:10.3969/j.issn.1001-5620.-2005.04.013 WANG Binyin, WEI Baohua, DENG Jin'gen. Temperature and seepage effects on safe mud window of unconsolidated sand reservoir formation[J]. Drilling Fluid & Completion Fluid, 2005, 22(4):40-42. doi:10.3969/j.issn.-1001-5620.2005.04.013 [50] TAO Q, GHASSEMI A. Poro-thermoelastic borehole stress analysis for determination of the in situ stress and rock strength[J]. Geothermics, 2010, 39(3):250-259. doi:10.1016/j.geothermics.2010.06.004 [51] ZHAI Z, ZAKI K, MARINELLO S. Coupled thermo-poro-mechanical effects on borehole stability[C]. SPE 123427, 2009. doi:10.2118/123427-MS [52] 毕博. 泥页岩渗透水化作用对井壁稳定的影响[J]. 钻井液与完井液,2011,28(S):1-3. doi:10.3969/j.issn.-1001-5620.2011.z1.001 BI Bo. Research on borehole stability affected by shale penetration and hydration[J]. Drilling Fluid and Completion Fluid, 2011, 28(S):1-3. doi:10.3969/j.issn.1001-5620.2011.z1.001 [53] GHASSEMI A, DIEK A. Linear chemo-poroelasticity for swelling shales:theory and application[J]. Journal of Petroleum Science and Engineering, 2003, 38(3):199-212. doi:10.1016/S0920-4105(03)00033-0 [54] ROSHAN H, RAHMAN S S. A fully coupled chemo-poroelastic analysis of pore pressure and stress distribution around a wellbore in water active rocks[J]. Rock Mechanics and Rock Engineering, 2011, 44(2):199-210. doi:10.1007/s00603-010-0104-7 [55] WANG Qian, ZHOU Yingcao, WANG Gang, et al. A fluid-solid-chemistry coupling model for shale wellbore stability[J]. Petroleum Exploration and Development, 2012, 39(4):475-480. doi:10.1016/S1876-3804(12)60069-X [56] YU M, CHEN G, CHENEVERT M E, et al. Chemical and thermal effects on wellbore stability of shale formations[C]. SPE 71366, 2001. doi:10.2118/71366-MS [57] AL-BAZALI T, ZHANG J, CHENEVERT M E, et al. Maintaining the stability of deviated and horizontal wells:Effects of mechanical, chemical and thermal phenomena on well designs[J]. Geomechanics and Geoengineering:An International Journal, 2008, 3(3):167-178. doi:10.2118/100202-MS [58] YIN S, TOWLER B F, DUSSEAULT M B, et al. Fully coupled THMC modeling of wellbore stability with thermal and solute convection considered[J]. Transport in porous media, 2010, 84(3):773-798. doi:10.1007/s11242-010-9540-9 [59] ZHOU X, GHASSEMI A. Finite element analysis of coupled chemo-poro-thermo-mechanical effects around a wellbore in swelling shale[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46:769-778. doi:10.1016/j.ijrmms.2008.11.009 [60] HELIO S, PLACIDO J C R, CLAUDIO W. Consequences and relevance of drillstring vibration on wellbore stability[C]. SPE 52820, 1999. doi:10.2118/52820-MS [61] ZHU Xiaohua, LIU Weiji. The effects of drill string impacts on wellbore stability[J]. Journal of Petroleum Science and Engineering, 2013, 109:217-229. doi:10.1016/j.-petrol.2013.08.004 |