[1] 尹成先. X70管线钢氢致开裂及应力腐蚀行为研究[D]. 西安:西安建筑科技大学, 2003. YIN Chengxian. Study on the Behaviors of X70 Pipeline in H2S Circumstance[D]. Xi'an:Xi'an University of Architecture And Technology, 2003. [2] 王炳英, 霍立兴, 王东坡, 等. X80管线钢在近中性pH溶液中的应力腐蚀开裂[J]. 天津大学学报, 2007, 6:757-760. doi:10.3969/j.issn.0493-2137.2007.06.024 WANG Bingying, HUO Lixing, WANG Dongpo, et al. Stress corrosion cracking of X80 pipeline steel in nearneutral pH values solutions[J]. Journal of Tianjin University, 2007, 6:757-760. doi:10.3969/j.issn.0493-2137.2007.06.024 [3] 方丙炎, 韩恩厚, 王俭秋, 等. 应变速率对管线钢近中性pH值环境敏感开裂的影响[J]. 金属学报, 2005, 41(11):66-74. doi:10.3321/j.issn:0412-1961.2005.11.010 FANG Bingyan, HAN Enhou, WANG Jianqiu, et al. Influence of strain rate on near-neutral pH environmentally assisted cracking of pipeline steels[J]. Acta Metallurgica Sinica, 2005, 41(11):66-74. doi:10.3321/j.issn:0412-1961.2005.11.010 [4] 郭浩, 李光福, 蔡珣, 等. 外加电位对X70管线钢在近中性pH溶液中的应力腐蚀破裂的影响[J]. 中国腐蚀与防护学报, 2004, 4:17-21. doi:10.3969/j.issn.1005-4537.2004.04.004 GUO Hao, LI Guangfu, CAI Xun, et al. Effect of applied potentials on stress corrosion cracking of X70 pipeline steel in near-neutral-pH solutions[J]. Chinese Journal of Corrosion and Protection, 2004, 4:17-21. doi:10.3969/j.issn.1005-4537.2004.04.004 [5] MCENIRY E J, HICKEL T, Neugebauer J R. Hydrogen behaviour at twist 110 grain boundaries in α-Fe[J]. Philosophical Transactions of the Royal Society A Mathematical Physical & Engineering Sciences, 2017, 375(2098):20160402. [6] SEITA M, HANSON J P, GRADECAK S, et al. The dual role of coherent twin boundaries in hydrogen embrittlement[J]. Nature Communications, 2015, 2(5):1-6. doi:10.1038/ncomms7164 [7] JOTHI S, CROFT T N, BROWN S G R, et al. Coupled macroscale-microscale model for hydrogen embrittlement in polycrystalline materials[J]. International journal of hydrogen energy, 2015, 40(6):2882-2889. doi:10.1016/j.ijhydene.2014.12.068 [8] 周国辉, 周富信, 赵雪丹, 等. 氢促进位错发射的分子动力学模拟[J]. 中国科学:技术科学, 1998, 1:3-5. ZHOU Guohui, ZHOU Fuxin, ZHAO Xuedan, et al. Molecular dynamics simulation of dislocation emission promoted by hydrogen[J]. Chinese Science:Technical Science, 1998, 1:3-5. [9] 李忠吉, 褚武扬, 高克玮, 等. 氢促进位错发射和裂纹扩展的三维分子动力学模拟[J]. 自然科学进展, 2002, 9:107-110. doi:10.3321/j.issn:1002-008X.2002.09.020 LI Zhongji, CHU Wuyang, GAO Kewei, et al. Threedimensional molecular dynamics simulation of dislocation emission and crack propagation promoted by hydrogen[J]. Advances in Natural Science, 2002, 9:107-110. doi:10.3321/j.issn:1002-008X.2002.09.020 [10] 沈海军, 付光俊. 铝氢脆破坏微观机制的分子动力学研究[J]. 强度与环境, 2010, 37(4):22-27. doi:10.3969/j.issn.1006-3919.2010.04.004 SHEN Haijun, FU Guangjun. The MD simulation of hydrogen embrittlement fracture for aluminum[J]. Intensity and Environmen, 2010, 37(4):22-27. doi:10.3969/j.issn.1006-3919.2010.04.004 [11] 许天旱, 赵典典, 宋海洋. 氢原子对非对称Σ5晶界α-铁力学性能影响的模拟研究[J]. 原子与分子物理学报, 2019, 36(5):843-848. doi:10.3969/j.issn.1000-0364.2019.05.021 XU Tianhan, ZHAO Diandian, SONG Haiyang. Simulations on the effect of hydrogen atoms on the mechanical properties of α-iron at asymmetric Σ5 grain boundary[J]. Journal of Atomic and Molecular Physics, 2019, 36(5):843-848. doi:10.3969/j.issn.1000-0364.2019.05.021 [12] YOO J Y, 姜基凤, 周雄龙, 等. X70针状铁素体管线钢的优点暨恶劣环境下油气输送管道工业的发展[J]. 焊管, 2004, 27(2):1-11. doi:10.3969/j.issn.1001-3938.2004.02.001 YOO J Y, JIANG Jifeng, ZHOU Xionglong, et al. The advantage of spicular ferrite pipeline steel X70 the development of transmitting oil & gas pipeline industry in atrocious weather[J]. Welded Pipe, 2004, 27(2):1-11. doi:10.3969/j.issn.1001-3938.2004.02.001 [13] JIANG Y F, ZHANG B, WANG D Y, et al. Hydrogenassisted fracture features of a high strength ferrite-pearlite steel[J]. Journal of Materials Science & Technology, 2019, 35(6):1081-1087. [14] HOWELL P R. The pearlite reaction in steels mechanisms and crystallography[J]. Materials Characterization, 1998, 40(4-5):227-260. [15] KELLY P M, ZHANG M X. Accurate orientation relationships between ferrite and cementite in pearlite[J]. Scripta materialia, 1997, 37(12):2009-2015. doi:10.1016/S1359-6462(97)00396-5 [16] RUDA M, FARKAS D, GARCIA G. Atomistic simulations in the Fe-C system[J]. Computational Materials Science, 2009, 45(2):550-560. doi:10.1016/j.commatsci.2008.11.020 [17] ZHANG X, HICKEL T, ROGAL J, et al. Structural transformations among austenite, ferrite and cementite in Fe-C alloys:A unified theory based on ab initio simulations[J]. Acta Materialia, 2015(99):281-289. doi:10.1016/j.actamat.2015.07.075 [18] GUZIEWSKI M, COLEMAN S P, WEINBERGER C R. Atomistic investigation into the atomic structure and energetics of the ferrite-cementite interface:The bagaryatskii orientation[J]. Acta Materialia, 2016(119):184-192. doi:10.1016/j.actamat.2016.08.017 [19] GRAEME J, ACKLAND D, HEPBURN J. Metalliccovalent interatomic potential for carbon in iron[J], 2008, 78(16):165111-165115. doi:10.1103/PhysRevB.78.165115 [20] HENRIKSSON K O E, NORDLUND K. Simulations of cementite:An analytical potential for the Fe-C system[J]. Physical Review Condensed Matter, 2009, 79(14). doi:10.1103/PhysRevB.79.144107 [21] HOU M, MALERBA L. Dimensionality of interstitial cluster motion in BCC Fe[J]. 2007, 75(10):4101-4108. [22] BHATIA M A, TSCHOPP M A, SOLANKI K N. Atomistic investigation of the role of grain boundary structure on hydrogen segregation and embrittlement in α-Fe[J]. Metallurgical and Materials Transactions, 2013, 44(3):1365-1375. doi:10.1007/s11661-012-1430-z [23] KUOPANPORTTI P, HAYWARD E, FU C, et al. Interatomic Fe-H potential for irradiation and embrittlement simulations[J].Computational Materials Science, 2016(111):525-531. doi:10.1016/j.commatsci.2015.09.021 [24] OUDRISS A, CREUS J, BOUHATTATE J, et al. Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel[J]. Acta Materialia, 2012, 60(19):6814-6828. doi:10.1016/j.actamat.2012.09.004 [25] YAMAKOV V, SAETHER E, PHILLIPS D R, et al. Molecular-dynamics simulation-based cohesive zone representation of intergranular fracture processes in aluminum[J]. Journal of Mechanics and Physics of Solids, 2006, 54(9):1899-1928. doi:org/10.1016/j.jmps.2006.03.004 |