[1] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、潜力及前景[J]. 天然气工业, 2021, 41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1):1-14. doi:10.3787/j.issn.1000-0976.2021.01.001 [2] 张金川,陶佳,李振,等. 中国深层页岩气资源前景和勘探潜力[J]. 天然气工业, 2021, 41(1):15-28. doi:10.3787/j.issn.1000-0976.2021.01.002 ZHANG Jinchuan, TAO Jia, LI Zhen, et al. Prospect of deep shale gas resources in China[J]. Natural Gas Industry, 2021, 41(1):15-28. doi:10.3787/j.issn.1000-0976.2021.01.002 [3] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. AAPG Bulletin, 2007, 91(4):603-622. doi:10.1306/11010606061 [4] 罗超文,李海波,刘亚群. 煤矿深部岩体地应力特征及开挖扰动后围岩塑性区变化规律[J]. 岩石力学与工程学报, 2011, 30(8):1613-1618. LUO Chaowen, LI Haibo, LIU Yaqun. Characteristics of in-situ stress and variation law of plastic zone of surrounding rocks around deep tunnels in a coal mine[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8):1613-1618. [5] 刘泉声,刘恺德. 淮南矿区深部地应力场特征研究[J]. 岩土力学, 2012, 33(7):2089-2096. doi:10.3969/j.issn.1000-7598.2012.07.026 LIU Quansheng, LIU Kaide. Characteristics of insitu stress field for deep levels in Huainan coal mine[J]. Rock and Soil Mechanics, 2012, 33(7):2089-2096. doi:10.3969/j.issn.1000-7598.2012.07.026 [6] 蔡美峰. 地应力测量原理和技术[M]. 北京:科学出版社, 2000. CAI Meifeng. Principle and technology of geostress measurement[M]. Beijing:Science Press, 2000. [7] 侯明勋,葛修润. 岩体初始地应力场分析方法研究[J]. 岩土力学, 2007, 28(8):1626-1630. doi:10.3969/j.issn.1000-7598.2007.08.018 HOU Mingxun, GE Xirun. Study on fitting analysis of initial stress field in rock masses[J]. Rock and Soil Mechanics, 2007, 28(8):1626-1630. doi:10.3969/j.issn.1000-7598.2007.08.018 [8] 佘成学,熊文林,陈胜宏. 边坡初始地应力场的应力函数与有限元联合反演法[J]. 武汉水利电力大学学报, 1995, 28(4):366-371. SHE Chengxue, XIONG Wenlin, CHEN Shenghong. A united inversion of the stress function and the FEM methods for initial geostress field in slope[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1995, 28(4):366-371. [9] 何江达,谢红强,王启智,等. 官地水电站坝址区初始地应力场反演分析[J]. 岩土工程学报, 2009, 31(2):166-171. doi:10.3321/j.issn:1000-4548.2009.02.003 HE Jiangda, XIE Hongqiang, WANG Qizhi, et al. Inversion analysis of initial geostress in dam site of Guandi Hydropower Project[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2):166-171. doi:10.3321/j.issn:1000-4548.2009.02.003 [10] 邱祥波,李术才,李树忱. 三维地应力回归分析方法与工程应用[J]. 岩石力学与工程学报, 2003(10):1613-1617. doi:10.3321/j.issn:1000-6915.2003.10.007 QIU Xiangbo, LI Shucai, LI Shuchen. 3D geostress regression analysis method and its application[J]. Chinese Journal of Rock Mechanics and Engineering, 2003(10):1613-1617. doi:10.3321/j.issn:1000-6915.2003.10.007 [11] 杨林德. 岩土工程反分析方法研究的发展方向[C]. 台州:全国岩土工程反分析学术研讨会暨黄岩石窟(锦绣黄岩)岩石力学问题讨论会, 2006. YANG Linde. Development direction of research on geotechnical engineering back analysis method[C]. Taizhou:National Symposium on Geotechnical Engineering Back Analysis and Seminar on Rock Mechanics in Huangyan Grottoe (Jinxiu Huangyan), 2006. [12] VAPNIK V N. The nature of statistical learning theory[J]. Springer, 1995. doi:10.1007/978-1-4757-3264-1_4 [13] 张国强,王桂萱. 基于神经网络结构分解与FLAC3D的初始地应力场反演[J]. 大连大学学报, 2007, 28(6):43-47. doi:10.3969/j.issn.1008-2395.2007.06.009 ZHANG Guoqiang, WANG Guixuan. Back-analysis of initial ground stress field based on neural network ensemble and generation of the initial ground stress field by using FLAC3D[J]. Journal of Dalian University, 2007, 28(6):43-47. doi:10.3969/j.issn.1008-2395.2007.06.009 [14] 李守巨,刘迎曦,王登刚. 基于遗传算法的岩体初始应力场反演[J]. 煤炭学报, 2001, 26(1):13-17. doi:10.3321/j.issn:0253-9993.2001.01.003 LI Shouju, LIU Yingxi, WANG Denggang. Inversion procedure of initial stress fields in rock masses based on genetic algorithm[J]. Journal of China Coal Society, 2001, 26(1):13-17. doi:10.3321/j.issn:0253-9993.2001.01.003 [15] NAKHAEI F, MOSAVI M R, SAM A. Recovery and grade prediction of pilot plant flotation column concentrate by a hybrid neural genetic algorithm[J]. International Journal of Mining Science and Technology, 2013, 23(1):67-69. doi:10.3969/j.issn.2095-2686.2013.01.011 [16] KAELO P, ALI M M. Numerical studies of some generalized controlled random search algorithms[J]. Asia-Pacific Journal of Operational Research, 2012, 29(2):1250016. doi:10.1142/S0217595912500169 [17] 谢佳彤,付小平,秦启荣,等. 丁山地区页岩储层裂缝分布预测及页岩气保存条件评价[J]. 特种油气藏, 2022, 29(1):1-9. doi:10.3969/j.issn.1006-6535.2022.01.001 XIE Jiatong, FU Xiaoping, QIN Qirong, et al. Prediction of fracture distribution in shale reservoirs in the Dingshan Area and evaluation of shale gas preservation conditions[J]. Special Oil & Gas Reservoir, 2022, 29(1):1-9. doi:10.3969/j.issn.1006-6535.2022.01.001 [18] 曾锦光,罗元华,陈太源. 应用构造面主曲率研究油气藏裂缝问题[J]. 力学学报, 1982, 18(2):202-205. doi:10.6052/0459-1879-1982-2-1982-023 ZENG Jinguang, LUO Yuanhua, CHEN Taiyuan. A methed for the study of reservoir fracturing based on structural principal curvatures[J]. Chinese Journal of Theoretical and Applied Mechanics, 1982, 18(2):202-205. doi:10.6052/0459-1879-1982-2-1982-023 [19] 邬光辉,李建军,杨栓荣,等. 塔里木盆地中部地区奥陶纪碳酸盐岩裂缝与断裂的分形特征[J]. 地质科学, 2002, 37(z1):51-56. doi:10.3321/j.issn:0563-5020.2002.z1.007 WU Guanghui, LI Jianjun, YANG Shuanrong, et al. Fractal characteristics of fissures and fractures of Ordovician carbonate rocks in the central Tarim Area[J]. Chinese Journal of Geology, 2002, 37(z1):51-56. doi:10.3321/j.issn:0563-5020.2002.z1.007 [20] 杜江民,张小莉,王青春,等. 柴达木盆地英西地区E23 储层裂缝发育特征[J]. 兰州大学学报(自然科学版), 2017, 53(4):452-458. doi:10.13885/j.issn.0455-2059.2017.04.004 DU Jiangmin, ZHANG Xiaoli, WANG Qingchun, et al. Characteristics of the fractures of reservoir in Yingxi Area, Qaidam Basin[J]. Journal of Lanzhou University (Natural Science), 2017, 53(4):452-458. doi:10.13885/j.issn.0455-2059.2017.04.004 [21] 陈明春,徐晟,魏春光. 裂缝型碳酸盐岩储层预测技术及海外气田勘探实践[J]. 地球物理学进展, 2015, 30(4):1660-1665. doi:10.6038/pg20150419 CHEN Mingchun, XU Sheng, WEI Chunguang. Technique of fractured carbonate reservoir prediction and its application in oversea gas field exploration[J]. Progress in Geophysics (in Chinese), 2015, 30(4):1660-1665. doi:10.6038/pg20150419 [22] 黄成刚,常海燕,崔俊,等. 柴达木盆地西部地区渐新世沉积特征与油气成藏模式[J]. 石油学报, 2017, 38(11):1230-1243. doi:10.7623/syxb201711002 HUANG Chenggang, CHANG Haiyan, CUI Jun, et al. Oligocene sedimentary characteristics and hydrocarbon accumulation model in the western Qaidam Basin[J]. Acta Petrolei Sinica, 2017, 38(11):1230-1243. doi:10.7623/syxb201711002 [23] 丁文龙,曾维特,王濡岳,等. 页岩储层构造应力场模拟与裂缝分布预测方法及应用[J]. 地学前缘, 2016, 23(2):63-74. doi:10.13745/j.esf.2016.02.008 DING Wenlong, ZENG Weite, WANG Ruyue, et al. Method and application of tectonic stress field simulation and fracture distribution prediction in shale reservoir[J]. Earth Science Frontiers, 2016, 23(2):63-74. doi:10.13745/j.esf.2016.02.008 [24] MONJEZI M, HESAMI S M, KHANDELWAL M. Superiority of neural networks for pillar stress prediction in bord and pillar method[J]. Arabian Journal of Geosciences, 2011, 4(5-6):845-853. doi:10.1007/s12517-009-0101-x [25] 王金安,李飞. 复杂地应力场反演优化算法及研究新进展[J]. 中国矿业大学学报, 2015, 44(2):189-205. WANG Jin'an, LI Fei. Review of inverse optimal algorithm of in-situ stress field and new achievement[J]. Journal of China University of Mining & Technology, 2015, 44(2):189-205. [26] 戴荣,李仲奎. 三维地应力场BP反分析的改进[J]. 岩石力学与工程学报, 2005, 24(1):83-88. doi:10.3321/j.issn:1000-6915.2005.01.014 DAI Rong, LI Zhongkui. Modified BP back analysis of 3D in-situ stresses[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(1):83-88. doi:10.3321/j.issn:1000-6915.2005.01.014 [27] 张经国,陈伟,孟立丰. 长宁页岩气田建武向斜构造解析及成因机制[J]. 化工设计通讯, 2021, 47(3):193-194. doi:10.3969/j.issn.1003-6490.2021.03.096 ZHANG Jingguo, CHEN Wei, MENG Lifeng. structural analysis and genetic mechanism of Jianwu syncline in Changning shale gas field[J]. Chemical Engineering Design Communications, 2021, 47(3):193-194. doi:10.3969/j.issn.1003-6490.2021.03.096 [28] 沈骋,赵金洲,谢军,等. 海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例[J]. 地质力学学报, 2020, 26(6):881-891. doi:10.12090/j.issn.1006-6616.2020.26.06.069 SHEN Cheng, ZHAO Jinzhou, XIE Jun, et al. Target window spatial distribution prediction based on network fracability:A case study of shale gas reservoirs in the Changning Block, southern Sichuan Basin[J]. Journal of Geomechanics, 2020, 26(6):881-891. doi:10.12090/j.issn.1006-6616.2020.26.06.069 [29] 易婷. 川南五峰组龙马溪组富有机质页岩硅质特征与储层之间的关系[D]. 成都:成都理工大学, 2020. YI Ting. Relationship between silica's characteristics and reservoirs of the organic-rich shale in Wufeng Formation-Longmaxi Formation in southern Sichuan Basin[D]. Chengdu:Chengdu University of Technology, 2020. [30] 范宇,王佳珺,刘厚彬,等. 泸州区块全井段地层力学性能及井壁稳定性[J]. 科学技术与工程, 2020, 20(16):6433-6439. doi:10.3969/j.issn.1671-1815.2020.16.019 FAN Yu, WANG Jiajun, LIU Houbin, et al. Formation mechanical properties and wellbore stability of the whole well section in Luzhou Block[J]. Science Technology and Engineering, 2020, 20(16):6433-6439. doi:10.3969/j.issn.1671-1815.2020.16.019 [31] 董敏,郭伟,张林炎,等. 川南泸州地区五峰组龙马溪组古构造应力场及裂缝特征[J]. 岩性油气藏, 2022, 34(1):43-51. doi:10.12108/yxyqc.20220105 DONG Min, GUO Wei, ZHANG Linyan, et al. Characteristics of paleotectonic stress field and fractures of Wufeng-Longmaxi formations in Luzhou Area, southern Sichuan Basin[J]. Lithologic Reservoirs, 2022, 34(1):43-51. doi:10.12108/yxyqc.20220105 [32] 李世愚,和泰名,尹祥础. 岩石断裂力学[M]. 北京:科学出版社, 2015. LI Shiyu, HE Taiming, YIN Xiangchu. Rock fracture mechanics[M]. Beijing:Science Press, 2015. [33] 蔡美峰. 岩石力学与工程[M]. 北京:科学出版社, 2002. CAI Meifeng. Rock mechanics and engineering[M]. Beijing:Science Press, 2002. [34] 李通林,谭学术,刘传伟. 矿山岩石力学[M]. 重庆:重庆大学出版社, 1991. LITonglin,TANXueshu,LIUChuanwei.Minerockmechanics[M]. Chongqing:Chongqing University Press,1991. [35] 王威,石文斌,付小平,等. 四川盆地涪陵地区中侏罗统凉高山组陆相页岩油气富集规律探讨[J]. 天然气地球科学, 2022, 33(5):764-774. doi:10.11764/j.issn.1672-1926.2021.10.010 WANG Wei, SHI Wenbin, FU Xiaoping, et al. Oil and gas enrichment regularity of continental shale of Lianggaoshan Formation of Middle Jurassic in Fuling Area, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5):764-774. doi:10.11764/j.issn.1672-1926.2021.10.010 |