西南石油大学学报(自然科学版) ›› 2025, Vol. 47 ›› Issue (3): 112-123.DOI: 10.11885/j.issn.1674-5086.2022.09.30.02

• 石油与天然气工程 • 上一篇    下一篇

水气分散体系驱油微观机理研究

尚祯浩1,2,3, 伍家忠2,3, 熊伟2,3, 张墨习1,2,3, 陈兴隆2,3   

  1. 1. 中国科学院大学工程科学学院, 北京 海淀 100190;
    2. 中国科学院渗流流体力学研究所, 河北 廊坊 065007;
    3. 中国石油勘探开发研究院, 北京 海淀 100083
  • 收稿日期:2022-09-30 发布日期:2025-07-11
  • 通讯作者: 陈兴隆,E-mail: chxlhdpu@petrochina.com.cn
  • 作者简介:尚祯浩,1998年生,男,汉族,陕西宝鸡人,硕士,主要从事油气渗流机理方面的研究工作。E-mail:2426130573@qq.com
    伍家忠,1967年生,男,汉族,湖南澧县人,教授级高级工程师,博士,主要从事油层物理与渗流、低渗油藏提高采收率等方面的研究工作。E-mail:wujiazhong@petrochina.com.cn
    熊伟,1971年生,男,汉族,四川营山人,高级工程师,博士,主要从事低渗透油藏储集层评价、渗流理论和非常规油藏开发等方面的研究工作。E-mail:xiongwei69@petrochina.com.cn
    张墨习,1999年生,女,汉族,河北辛集人,硕士,主要从事油气渗流机理方面的研究工作。E-mail:1157219906@qq.com
    陈兴隆,1974年生,男,汉族,山东济宁人,高级工程师,博士,主要从事油气渗流理论及油层物理实验方面的研究工作。E-mail:chxlhdpu@petrochina.com.cn
  • 基金资助:
    国家重大科技专项(2021DJ1302)

Micro Mechanism of Oil Displacement by Water Gas Dispersion System

SHANG Zhenhao1,2,3, WU Jiazhong2,3, XIONG Wei2,3, ZHANG Moxi1,2,3, CHEN Xinglong2,3   

  1. 1. College of Engineering Sciences, University of Chinese Academy of Sciences, Haidian, Beijing 100190, China;
    2. Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang, Hebei 065007, China;
    3. Research Institute of Petroleum Exploration and Development, PetroChina, Haidian, Beijing 100083, China
  • Received:2022-09-30 Published:2025-07-11

摘要: 低渗透储层孔隙小、喉道细、渗流阻力大,常规水驱采出程度仅为20%左右,而注气开发不仅受气源的限制,更因气窜等问题严重影响低渗油藏开发效果,因此,提出了针对低渗透储层的水气分散体系驱油技术。为认识水气分散体系微观驱油机理,利用微观刻蚀模型、高速摄像机采集和ImagePro—Plus6.0软件识别等手段,通过水驱、气驱及水气分散体系驱油实验,记录、识别和定量计算分析了驱替过程中流体流动特征及分布规律。实验研究表明,水驱主要动用区域为主流通道,剩余油主要分布在模型的边部及角部;CO2气窜特征明显,气体主要在孔隙中心流动,并在孔隙壁面形成水膜/油膜;水气分散体系驱油最显著的特征是其进入孔隙后与油相“高度”混合,混合后的微气泡既能产生“封堵”作用,增大主流通道渗流阻力,又能促使后续流体改向进入水驱或气驱未波及的小孔隙中,扩大波及体积作用明显,对边部及角部剩余油驱替作用显著,甚至能将盲端中的残余油全部采出。水驱、气驱及水气分散体系驱的采收率分别为71.6%、82.0%和91.0%,水气分散体系在提高驱油效率的作用突出。

关键词: 微观机理, 水气分散体系, 渗流阻力, 波及体积, 驱油效率

Abstract: Low permeability reservoirs have small pores, fine throats and large seepage resistance, and the recovery percent of conventional water drive is only about 20%. Gas injection development is not only limited by gas sources, but also seriously affected by gas channeling and other problems; therefore, it is urgent to develop key technologies to continuously improve oil recovery in low permeability reservoirs. The oil displacement technology of water gas dispersion system is a new technology to improve oil recovery. This technology can realize the control of seepage resistance and supplement energy at the same time, thus greatly improving the water displacement efficiency of low permeability reservoirs. In order to understand the micro oil displacement mechanism of water gas dispersion system, the flow characteristics and distribution laws of fluid in the displacement process were recorded, identified and quantitatively calculated through water drive, gas drive and water gas dispersion system oil displacement experiments by means of micro etching model, high-speed camera acquisition and ImagePro-Plus6.0 software identification. The experimental study shows that the main producing area of water drive is the main channel, and the remaining oil is mainly distributed in the edges and corners of the model; the characteristics of CO2 gas channeling are obvious, the gas mainly flowing in the pore center and forming a water/oil film on the pore wall; the most remarkable feature of water gas dispersion system for oil displacement is that it mixes with the oil phase “highly” after entering the pores. The mixed microbubbles can not only produce “plugging” effect, increasing the seepage resistance of the main channel, but also promote the subsequent fluid to change direction and enter the small pores that are not swept by water drive or gas drive, with obvious effect of expanding the swept volume. And it can significantly displace the remaining oil at the edges and corners, and even recover all the residual oil in the blind end. The oil recovery efficiency of water drive, gas drive and water gas dispersion system drive is 71.6%, 82.0% and 91.0%, and water gas dispersion system plays a prominent role in improving oil displacement efficiency.

Key words: micro mechanism, water gas dispersion system, seepage resistance, swept volume, oil displacement efficiency

中图分类号: