西南石油大学学报(自然科学版)

• 地质勘探 • 上一篇    下一篇

储层粒度神经网络预测模型研究

王利华1 *,楼一珊1,马晓勇2,程福山1,陈宇3   

  1. 1. 油气资源与勘探技术教育部重点实验室·长江大学,湖北荆州434023
    2. 中国石化胜利石油工程有限公司,山东东营257064
    3. 北京锦辉博泰科技有限公司,北京昌平102249
  • 出版日期:2016-02-01 发布日期:2016-02-01
  • 通讯作者: 王利华,E-mail:511655048@qq.com
  • 基金资助:

    国家科技重大专项(2008ZX05056 002 03;2008ZX05024 003 01)

Research on Neural Network Prediction Model of Reservoir Particle Size

WANG Lihua1*, LOU Yishan1, MA Xiaoyong2, CHENG Fushan1, CHEN Yu3   

  1. 1. MOE key Laboratory of Exploration Technologies for Oil and Gas Resources,Yangtze University,Jingzhou,Hubei 434023,China
    2. Shengli Oilfield Service Corporation,SINOPEC,Dongying,Shandong 257064,China
    3. Jinhuibotai-Tech. CO. Ltd.,Changping,Beijing 102249,China
  • Online:2016-02-01 Published:2016-02-01

摘要:

国内外多年的研究表明,储层粒度特征值(d50)、非均质系数(d40=d90)是防砂设计的基础。常规获取粒度分布
范围的方法主要有激光粒度测试法(LDA)与筛析法(SA),两种方法均需要通过岩芯粒度测试来获取数据,而在制定
开发井的完井防砂措施时往往没有实际开采层位的岩芯,只能参照探井粒度数据进行设计,从而导致较大的误差。针
对该问题,从测井的角度出发,开展了储层粒度与多种测井曲线的响应关系的研究,采用神经网络技术,建立了探井伽
马、密度测井项与实测粒度特征值三者样本库,训练出满足工程需要的学习网络,进而结合开发井测井资料,获得了整
个粒度纵向分布剖面,为防砂分层设计提供准确的基础数据支撑。目前,该方法在中国海上多个油田的分层防砂优化
设计中获得了成功应用,预测误差可控制在10% 以内。

关键词: 分层防砂, 粒度特征值, 神经网络, 伽马密度测井, 样本库

Abstract:

According to researches at home and abroad,sand control design is based on reservoir particle size characteristic
value. LDA and SA are the conventional methods used to analyze particle size distributions. Both methods requires data through
core particle size testing. But sand control design can only use test well data,because no core at actual producing position can
be used when sand control measure is established,which can result in major errors. This article elaborates the relevance about
median grain size and gamma ray logging or density logging through researches on reservoir particle size and variety of log
curve response relation. And then through establishing sample pool of gamma ray logging or density logging and characteristic
value,and by neural network technology we trained learning network satisfing engineering requirements. Then the particle
size longitudinal distribution profile can be established according to development well logging data. This profile supplied data
basis for sand control layering design. At present,this method has been successfully used in several Chinese offshore oil field
in sand control optimization with errors below 10%.

Key words: layered sand control, characteristic value of particle size, neural network, gamma and density logging, sample
pool

中图分类号: