西南石油大学学报(自然科学版)

• 石油机械工程 • 上一篇    下一篇

基于GA-BP 算法的旋转控制头轴承温度预测

莫丽1 *,王军1,王俊2,王禄友1   

  1. 1. 西南石油大学机电工程学院,四川成都610500
    2. 成都理工大学地学核技术四川省重点实验室,四川成都610059
  • 出版日期:2016-02-01 发布日期:2016-02-01
  • 通讯作者: 莫丽,E-mail:moli3913@126.com
  • 基金资助:

    国家科技重大专项(2011ZX05037 002)。

A Rotary Control Head Bearing Temperature Prediction Model Based#br# on GA-BP Algorithm in Underbalanced Drilling

MO Li1*, WANG Jun1, WANG Jun2, WANG Luyou1   

  1. 1. School of Mechatronic Engineering,Southwest Petroleum University,Chengdu,Sichuan 610500,China
    2. Provincial Key Lab of Applied Nuclear Techniques in Geosciences,Chengdu University of Technology,Chengdu,Sichuan 610059,China
  • Online:2016-02-01 Published:2016-02-01

摘要:

旋转控制头轴承组件要承受很大的动载荷,由于摩擦力的作用,使轴承发热和磨损非常严重,极易发生轴承
温度过高而导致轴承失效。针对旋转控制头轴承温度影响因素多、精确计算困难、不易测量等特点,提出了一种基于
遗传算法优化的神经网络(the optimized algorithm of BP neural network based on genetic algorithm,GA-BP)进行旋转控
制头轴承温度预测的方法,利用某无外挂冷却润滑泵站式旋转控制头台架实验数据进行训练和测试,并与传统神经网
络模型(BP)进行对比。结果表明,GA-BP 预测模型实现了控制头轴承温度预测过程的自适应控制,预测得到的轴承
温度与期望值之间的线性相关度达到0.991 48;通过95% 置信区间以及平均、最大、最小绝对百分比误差的对比得到,
GA-BP 模型在逼近能力、收敛和泛化能力上都要优于BP 预测模型。GA-BP 预测模型预测精度高、稳定性好,对掌
握轴承运行状态,优化旋转控制头冷却润滑方式和结构,提高旋转控制头的整体性能有重要指导意义。

关键词: 旋转控制头, 轴承温度, 遗传算法, 神经网络, 置信区间

Abstract:

Rotary contol head(RCH)bearing assembly withstands great dynamic load,and severe heat and abrasion resulting
from the friction force. Shorter equipment life may arise because of bearing failure caused by excessive bearing temperature.
Aiming to overcome the difficulty in precise calculating and measuring,due to various influence factors on RCH bearing
temperature,a method based on GA-BP(the optimized algorithm of BP neural network based on genetic algorithm,GA-BP)is
proposed to predict RCH bearing temperature. The bench test data of an outboard cooling and lubrication pump station RCH
was used for training and testing,and traditional neural network model(BP)was used for comparison. Results show that,the
GA-BP prediction model can realize adaptive control for RCH bearing temperature prediction process. The linear correlation
between prediction value and the expectative output comes up to 0.991 48. 95% confidence interval and mean,max,min
absolute percentage error were contrasted between GA-BP and BP,and the result shows that the approximation capability,
convergence and generalization ability of GA-BP are better than BP. With high prediction accuracy and good stability,GA-BP
model can help monitor the bearing running state,and optimization of the cooling and lubrication stuctures. The GA-BP model
has an important guiding significance in improving the overall performance of RCH.

Key words: rotary control head, bearing temperature, genetic algorithms, neural networks, confidence interval

中图分类号: