西南石油大学学报(自然科学版) ›› 2017, Vol. 39 ›› Issue (1): 63-72.DOI: 10.11885/j.issn.1674-5086.2015.07.18.01
Previous Articles Next Articles
TANG Mingming1, ZHANG Jinliang2
Received:
2015-07-18
Online:
2017-02-01
Published:
2017-02-01
CLC Number:
TANG Mingming, ZHANG Jinliang. Facture Modeling Research of Tight Oil Reservoir Based on Fracture Propagation Inversion Model[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 63-72.
[1] TANG M M, ZHANG J L, MA H F, et al. Fracture modelling based on the stochastic extended finite element method[J]. Petroleum Geoscience, 2013, 19(4):343-355. doi:10.1144/petgeo2011-062 [2] TANG M M, ZHANG J L, YU X Y. Fracture modeling and application based on fracture mechanics[C]. SPE 131305, 2010. [3] 詹国卫,邓刚. 通南巴构造带飞三段储层主控因素探讨[J]. 西南石油大学学报(自然科学版), 2013, 35(1):74-78. doi:10.3863/j.issn.1674-5086.2013.01.010 ZHAN Guowei, DENG Gang. A discussion on main controlling factors of the third Feixianguan Formation in Tongnanba Tectonic Zone[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(1):74-78. doi:10.3863/j.issn.1674-5086.2013.01.010 [4] ROBINSON P C. Connectivity of fracture systems-A percolation theory approach[J]. Journal of Physics A:Mathematical and General, 1983, 16(3):605-614. doi:10.1088/0305-4470/16/3/020 [5] SAHIM I M. Flow phenomena in rocks:From continuum models to fractals, percolation, cellular automata, and simulated annealing[J]. Reviews of Modern Physics, 1993, 65(4):1393-1534. doi:10.1103/RevModPhys.65.1393 [6] SAUSSE J, DEZAYES C, DORBATH L, et al. 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles[J]. Comptes Rendus Geoscience, 2010, 342(7/8):531-545. doi:10.1016/j.crte.2010.01.011 [7] NADEAU R, ANTOLIK M, JOHNSON P A, et al. Seismological studies at Parkfield III:Microearthquake clusters in the study of fault-zone dynamics[J]. Bulletin of the Seismological Society of America, 1994, 84(2):247-263.doi:10.1016/0148-9062(94)90077-9 [8] GUPTA A K, ADLER P M. Stereological analysis of fracture networks along cylindrical galleries[J]. Mathematical Geology, 2006, 38(3):233-267. doi:10.1007/s11004-005-9018-4 [9] OZKAYA S I, MATTNER J. Fracture connectivity from fracture intersections in borehole image logs[J]. Computers & Geosciences, 2003, 29(2):143-153. doi:10.1016/S0098-3004(02)00113-9 [10] 王玉满,黄金亮,李新景,等. 四川盆地下志留统龙马溪组页岩裂缝孔隙定量表征[J]. 天然气工业, 2015, 35(9):8-15. doi:10.3787/j.issn.1000-0976.2015.09.002 WANG Yuman, HUANG Jinliang, LI Xinjing, et al. Quantitative characterization of fractures and pores in shale beds of the Lower Silurian, Longmaxi Formation, Sichuan Basin[J]. Natural Gas Industry, 2015, 35(9):8-15. doi:10.3787/j.issn.1000-0976.2015.09.002 [11] 张关龙,张奎华,王圣柱,等. 哈拉阿拉特山石炭系裂缝发育特征及成藏意义[J]. 西南石油大学学报(自然科学版), 2014, 36(3):9-18. doi:10.11885/j.issn.1674-5086.2014.01.28.02 ZHANG Guanlong, ZHANG Kuihua, WANG Shengzhu, et al. Characteristics of the carboniferous volcanic fractures and its hydrocarbon accumulation significance in Hala'alate Mountains[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(3):9-18. doi:10.11885/j.issn.1674-5086.2014.01.28.02 [12] 王时林,秦章晋. 腰英台油田青山口组储层裂缝特征研究[J]. 西南石油大学学报(自然科学版), 2015, 37(1):51-56. doi:10.11885/j.issn.1674-5086.2013.09.02.05 WANG Shilin, QIN Zhangjin. Research on fracture characteristic in reservoir of Qingshangkou Formation, Yaoyingtai Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(1):51-56. doi:10.11885/j.issn.1674-5086.2013.09.02.05 [13] LA POINTE P R. Derivation of parent fracture population statistics from trace length measurements of fractal fracture populations[J]. International Journal of Rock Mechanics and Mining Sciences, 2002, 39(3):381-388. doi:10.1016/S1365-1609(02)00021-7 [14] YOUNG D S. Indicator kriging for unit vectors:Rock joint orientations[J]. Mathematical Geology, 1987, 19(6):481-501. doi:10.1007/BF00896916 [15] XU C, DOWD-P A, MARDIA K V, et al. Parametric intensity estimation for stochastic fracture modelling[J]. Geological Sciences, 2003, 16:63-70. [16] XU C, DOWD-P A, MARDIA K V, et al. A connectivity index for discrete fracture networks[J]. Mathematical Geology, 2006, 38(5):611-634. doi:10.1007/s11004-006-9029-9 [17] EGAN S S, KANE S, BUDDIN T S, et al. Computer modelling and visualisation of the structural deformation caused by movement along geological faults[J]. Computers & Geosciences, 1999, 25(3):283-297. doi:10.1016/S0098-3004(98)00125-3 [18] TANNER D C, BEHRMANN J H, DRESMANN H. Three-dimensional retro-deformation of the Lechtal Nappe, northern Calcareous Alps[J]. Journal of Structural Geology, 2003, 25(5):737-748. doi:10.1016/S0191-8141(02)00057-3 [19] BULNES M, MCCLAY K. Benefits and limitations of different 2D algorithms used in cross-section restoration of inverted extensional faults:Application to physical experiments[J]. Tectonophysics, 1999, 312(2/4):175-189. doi:10.1016/S0040-1951(99)00161-4 [20] STORTI F, SALVINI F, MCCLAY K. Fault-related folding in sandbox analogue models of thrust wedges[J]. Journal of Structural Geology, 1997, 19(3/4):583-602. doi:10.1016/S0191-8141(97)83029-5 [21] SUPPE J. Geometry and kinematics of fault-bend folding[J]. American Journal of Science, 1983, 283(7):684-721. doi:10.2475/ajs.283.7.684 [22] ANTONELLINI M, MOLLEMA PN. A natural analog for a fractured and faulted reservoir in dolomite:Triassic Sella Group, Northern Italy[J]. AAPG Bulletin, 2000, 84(3):314-344. doi:10.1306/C9EBCDDD-1735-11D7-8645000102C1865D [23] HENNINGS P H, OLSON J E, THOMPSON L B. Combining outcrop data and three-dimensional structural models to characterize fractured reservoirs:An example from Wyoming[J]. AAPG Bulletin, 2000, 84(6):830-849. doi:10.1306/A967340A-1738-11D7-8645000102C1865D [24] GOL'DSHTEJN R V, MOSOLOV A B. Cracks with a fractal surface[J]. Dokl Akad Nauk SSSR, 1991, 319(4):840-844. [25] YAVARI A, HOCKETT K G, SARKANI S. The fourth mode of fracture in fractal fracture mechanics[J]. International Journal of Fracture, 2000, 101(4):365-384. doi:10.1023/A:1007650510881 [26] YAVARI A, SARKANI S, MOYER JR E T. The mechanics of self-similar and self-affine fractal cracks[J]. International Journal of Fracture, 2002, 114(1):1-27. doi:10.1023/A:1014878112730 [27] GOL'DSHTEJN R V, MOSOLOV A B. Fractal cracks[J]. Journal of Applied Mathematics and Mechanics, 1992, 56(4):563-571. doi:10.1016/0021-8928(92)90012-W [28] BALANKIN A S. Physics of fracture and mechanics of self-affine cracks[J]. Engineering Fracture Mechanics, 1997, 57(2/3):135-203. doi:10.1016/S0013-7944(97)00007-6 [29] BORODICH F M. Some fractal models of fracture[J]. Journal of the Mechanics and Physics of Solids, 1997, 45(2):239-259. doi:10.1016/S0022-5096(96)00080-4 [30] CHEREPANOV G P, BALANKIN A S, IVANOVA V S. Fractal fracture mechanics-A review[J]. Engineering Fracture Mechanics, 1995, 51(6):997-1033. doi:10.1016/0013-7944(94)00323-A [31] LI Q, XING H, LIU J, et al. A review on hydraulic fracturing of unconventional reservoir[J]. Petroleum, 2015, 1(1):8-15. doi:http://dx.doi.org/10.1016/j.petlm.2015.03.008 [32] BONN D, KELLAY H, PROCHNOW M, et al. Delayed fracture of an inhomogeneous soft solid[J]. Science, 1998, 280(4):265-267. doi:10.1126/science.280.5361.265 [33] DURAND M D, WHITE S R. Trading accuracy for speed in parallel simulated annealing with simultaneous moves[J]. Parallel Computing, 2000, 26(1):135-150. doi:10.1016/S0167-8191(99)00099-X [34] VASAN A, RAJU K S. Comparative analysis of simulated annealing, simulated quenching and genetic algorithms for optimal reservoir operation[J]. Applied Soft Computing, 2009, 9(1):274-281. doi:10.1016/j.asoc.2007.09.002 [35] ZHANG H H, LI L X. Modeling inclusion problems in viscoelastic materials with the extended finite element method[J]. Finite Elements in Analysis and Design, 2009, 45(10):721-729. doi:10.1016/j.finel.2009.06.006 [36] ABDELAZIZ Y, HAMOUINE A. A survey of the extended finite element[J]. Computers & Structures, 2008, 86(11/12):1141-1151. doi:10.1016/j.compstruc.2007.11.001 [37] WYART E, COULON D, PARDOEN T, et al. Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures[J]. Engineering Fracture Mechanics, 2009, 76(1):44-58. doi:10.1016/j.engfracmech.2008.04.025 [38] RÓDENAS J J, GONZÁLEZ-ESTRADA O A, DÍEZ P, et al. Accurate recovery-based upper error bounds for the extended finite element framework[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(37/40):2607-2621. doi:10.1016/j.cma.2010.04.010 [39] GOOVAERTS P. Geostatistics for natural resources evaluation[M]. London:Oxford University Press, 1997:40-45. [40] ZHANG K J. North and South China collision along the eastern and southern north China margins[J]. Tectonophysics, 1997, 270(1/2):145-156. doi:10.1016/S0040-1951(96)00208-9 [41] 胡望水,吕炳全,张文军,等. 松辽盆地构造演化及成盆动力学探讨[J]. 地质科学, 2005, 40(1):16-31. doi:10.3321/j.issn:0563-5020.2005.01.002 HU Wangshui, LÜ Bingquan, ZHANG Wenjun, et al. An approach to tectonic evolution and dynamics of the Songliao Basin[J]. Chinese Journal of Geology, 2005, 40(1):16-31. doi:10.3321/j.issn:0563-5020.2005.01.002 [42] 李娟,舒良树. 松辽盆地中、新生代构造特征及其演化[J]. 南京大学学报(自然科学版), 2002, 38(4):525-531. doi:10.3321/j.issn:0469-5097.2002.04.010 LI Juan, SHU Liangshu. Mesozoic-Cenozoic tectonic features and evolution of the Songliao Basin, NE China[J]. Journal of Nanjing University (Natural Science), 2002, 38(4):525-531. doi:10.3321/j.issn:0469-5097.2002.04.010 [43] RAMSEY J M, CHESTER F M. Hybrid fracture and the transition from extension fracture to shear fracture[J]. Nature, 2004, 428(6978):63-66. doi:10.1038/nature02333 [44] 薛艳梅,夏东领,苏宗富,等. 多信息融合分级裂缝建模[J]. 西南石油大学学报(自然科学版), 2014, 36(2):57-63. doi:10.11885/j.issn.1674-5086.2012.08.30.11 XUE Yanmei, XIA Dongling, SU Zongfu, et al. Fracture modeling at different scales based on convergent multisource information[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2):57-63. doi:10.11885/j.issn.1674-5086.2012.08.30.11 [45] 刘超,谢传礼,李宇鹏,等. 利用虚拟井提高相控随机建模中地质约束的原理和方法[J]. 天然气地球科学,2015,26(4):616-624. doi:10.11764/j.issn.1672-1926.2015.04.0616 LIU Chao, XIE Chuanli, LI Yupeng, et al. The principle and method to enhance geological constraint by inserting virtual wells in facies controlling stochastic reservoir modeling[J]. Natural Gas Geoscience, 2015, 26(4):616-624. doi:10.11764/j.issn.1672-1926.2015.04.0616 [46] 马中远,黄苇,任丽丹,等. 顺西地区良里塔格组裂缝特征及石油地质意义[J]. 西南石油大学学报(自然科学版), 2014, 36(2):35-44. doi:10.11885/j.issn.1674-5086.2012.10.29.02 MA Zhongyuan, HUANG Wei, REN Lidan, et al. Fracture characteristics and petroleum geological significance of Lianglitage Formation in Shunxi Area[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 36(2):35-44. doi:10.11885/j.issn.1674-5086.2012.10.29.02 |
[1] | HUANG Xuri, DAI Yue, XU Yungui, TANG Jing. Seismic Inversion Experiments Based on Deep Learning Algorithm Using Different Datasets [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 16-25. |
[2] | CHEN Xue, XU Jianliang, LI Jing, XIAO Jianfeng, ZHONG Sicun. An Analysis of Main Controlling Factors of Production for Horizontal Shale Gas Well in Weiyuan Block [J]. 西南石油大学学报(自然科学版), 2020, 42(5): 63-74. |
[3] | SUN Lin, HUANG Bo, YI Fei, ZHANG Jie. The Gas from Deflagration Fracture to Crack the Cement Test Sample Experiment [J]. 西南石油大学学报(自然科学版), 2020, 42(5): 99-106. |
[4] | YUE Hong, YANG Zhaozhong, FAN Yu. Research and Application of Volume Fracturing Technology Fracture Control in Ning 209 Area [J]. 西南石油大学学报(自然科学版), 2020, 42(5): 86-98. |
[5] | ZHANG Boning, ZHANG Ruihan, WU Tingting, LU Youchang. Mechanism Analysis of the Production Performance of Multi-stage Fractured Horizontal Well in Tight Gas Reservoir [J]. 西南石油大学学报(自然科学版), 2020, 42(5): 107-117. |
[6] | JIANG Tongwen, ZHANG Hui, XU Ke, WANG Zhimin, WANG Haiying. Reservoir Geomechanical Characteristics and the Influence on Development in Keshen Gas Field [J]. 西南石油大学学报(自然科学版), 2020, 42(4): 1-12. |
[7] | ZHAO Xiaoming, FENG Shenglun, TAN Chengpeng, FENG Mochen, TANG Chun. Formation Mechanism and Sedimentary Characteristics of Translational Point Bars [J]. 西南石油大学学报(自然科学版), 2020, 42(4): 22-36. |
[8] | SONG Chuanzhen, ZHU Guiliang, LIU Zhongchun. Measurement and Effecting Factors of Nitrogen Diffusion Coefficient in Vug-fracture Reservoir [J]. 西南石油大学学报(自然科学版), 2020, 42(4): 95-103. |
[9] | MOU Zhonghai, LIU Xue, CHANG Lin, SU Qiu, WU Qianran. Modeling of the Reservoir Architecture of Thin Interbedded Deposits [J]. 西南石油大学学报(自然科学版), 2020, 42(3): 1-12. |
[10] | WANG Kaiyu, WANG Chao, FAN Jiawei, XU Yanlong, RAN Lijun. Methods of Detailed Geological Modeling of Reservoir Interlayers in Thick Marine Sandstones [J]. 西南石油大学学报(自然科学版), 2020, 42(3): 69-79. |
[11] | YU Xueliang, XU Yun, WENG Dingwei, JIANG Hao, DUAN Yaoyao. Factors Influencing the Productivity of the Multi-fractured Shale Oil Reservoir with Tighter Clusters [J]. 西南石油大学学报(自然科学版), 2020, 42(3): 132-143. |
[12] | ZHANG Yintao, SUN Chong, WANG Xuan, YUAN Jingyi, YIN Huairun. Reservoir Formation Patterns in the Strike-slip Fault Zone of the Halahatang Oilfield [J]. 西南石油大学学报(自然科学版), 2020, 42(1): 10-18. |
[13] | ZHANG Liehui, CUI Qianchen, XIE Jun, ZHENG Jian, LI Chengyong. Linear Coupling Seepage Model for Fractured Horizontal Wells in Shale Gas Reservoir [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 1-12. |
[14] | LIU Houbin, CUI Shuai, MENG Yingfeng, WU Shuang, WU Ke. Study on Mechanical Characteristics and Wellbore Stability of Hard Brittle Shale in Western Sichuan [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 60-67. |
[15] | MA Tianshou, PENG Nian, CHEN Ping, DENG Zhizhong. Wellbore Fracture Initiation Mechanical Behavior in a Horizontal Shale Gas Well [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 87-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||