[1] KHOSROKHAVAR R, GRIFFITHS S, WOLF K H. Shale gas formations and their potential for carbon storage:Opportunities and outlook[J]. Environmental Processes, 2014, 1(4):595-611. doi:10.1007/s40710-014-0036-4 [2] SCHEPERS K C, NUTTALL B C, OUDINOT A Y, et al. Reservoir modeling and simulation of the devonian gas shale of eastern kentucky for enhanced gas recovery and CO2 storage[C]. SPE 126620-MS, 2009. doi:10.2118/-126620-MS [3] DAHAGHI A K. Numerical simulation and modeling of enhanced gas recovery and CO2 sequestration in shale gas reservoirs:A feasibility study[C]. SPE 139701-MS, 2010. doi:10.2118/139701-MS [4] JIANG Jiamin, SHAO Yuanyuan, YOUNIS R M. Development of a multi-continuum multi-component model for enhanced gas recovery and CO2 storage in fractured shale gas reservoirs[C]. SPE 169114-MS, 2014. doi:10.2118/-169114-MS [5] HELLER R, ZOBACK M. Adsorption of methane and carbon dioxide on gas shale and pure mineral samples[J].Journal of Unconventional Oil and Gas Resources, 2014, 8:14-24. doi:10.1016/j.juogr.2014.06.001 [6] 张美红,吴世跃,李川田. 煤系地层注入CO2 开采煤层气质交换的机理[J]. 煤炭学报, 2013, 38(7):1196-1200. doi:10.13225/j.cnki.jccs.2013.07.015 ZHANG Meihong, WU Shiyue, LI Chuantian. Mass exchange mechanism of coalbed methane exploitation by CO2 injection in coal measure strata[J]. Journal of China Coal Society, 2013, 38(7):1196-1200. doi:10.13225/j.-cnki.jccs.2013.07.015 [7] LIU Faye, Ellett K, XIAO Yitian, et al. Assessing the feasibility of CO2 storage in the new Albany Shale (Devonian-Mississippian) with potential enhanced gas recovery using reservoir simulation[J]. International Journal of Greenhouse Gas Control, 2013, 17:111-126. doi:10.-1016/j.ijggc.2013.04.018 [8] GODEC M, KOPERNA G, PETRUSAK R, et al. Potential for enhanced gas recovery and CO2 storage in the marcellus shale in the eastern United States[J]. International Journal of Coal Geology, 2013, 118:95-104. doi:10.1016/j.-coal.2013.05.007 [9] KIM T H, PARK S S, LEE K S. Modeling of CO2 injection considering multi-component transport and geomechanical effect in shale gas reservoirs[C]. SPE 176174-MS, 2015. doi:10.2118/176174-MS [10] 申建,秦勇,张春杰,等. 沁水盆地深煤层注入CO2 提高煤层气采收率可行性分析[J]. 煤炭学报, 2016, 41(1):156-161. doi:10.13225/j.cnki.jccs.2015.9030 SHEN Jian, QIN Yong, ZHANG Chunjie, et al. Feasibility of enhanced coalbed mehtane recovery by CO2 sequestration into deep coalbed of Qinshui Basin[J]. Journal of China Coal Society, 2016, 41(1):156-161. doi:10.13225/-j.cnki.jccs.2015.9030 [11] NING Xiuxu, FAN Jin, HOLDITCH S A, et al. The measurement of matrix and fracture properties in naturally fractured cores[C]. SPE 25898-MS, 1993. doi:10.2118/-25898-MS [12] LUFFEL D L, HOPKINS C W, SCHETTLER P D. Matrix permeability measurement of gas productive shales[C]. SPE 26633-MS, 1993. doi:10.2118/26633-MS [13] SINHA S, BRAUN E M, PASSEY Q R. Advances in measurement standards and flow properties measurements for tight rocks such as shales[C]. SPE 152257-MS, 2012. doi:10.2118/152257-MS [14] GHANIZADEH A, BHOWMIK S, HAERI-ARDAKANI O. A comparison of shale permeability coefficients derived using multiple non-steady-state measurement techniques:Examples from the Duvernay Formation, Alberta (Canada)[J]. Fuel, 2015, 140:371-387. doi:10.1016/j.-fuel.2014.09.073 [15] TINNI A, FATHI E, AGARWAL R. Shale permeability measurements on plugs and crushed samples[C]. SPE 162235-MS, 2012. doi:10.2118/162235-MS [16] SUAREZ R R, CHERTOV M, WILLBERG D M, et al. Understanding permeability measurements in tight shales promotes enhanced determination of reservoir quality[C]. SPE 162816-MS, 2012. doi:10.2118/162816-MS [17] JAVADPOUR F, FISHER D, UNSWORTH M. Nanoscale gas flow in shale gas sediments[J]. Journal of Canadian Petroleum Technology, 2007, 46(10):55-61. doi:10.2118/-07-10-06 [18] 陈强,康毅力,游利军,等. 页岩微孔结构及其对气体传质方式影响[J]. 天然气地球科学, 2013, 24(6):1298-1304. CHEN Qiang, KANG Yili, YOU Lijun, et al. Micro-pore structure of gas shale and its effect on gas mass transfer[J]. Natural Gas Geoscience, 2013, 24(6):1298-1304. [19] 田守嶒,王天宇,李根生,等. 页岩不同类型干酪根内甲烷吸附行为的分子模拟[J]. 天然气工业, 2017, 37(12):18-25. doi:10.3787/j.issn.1000-0976.2017.12.-003 TIAN Shouzeng, WANG Tianyu, LI Gensheng, et al. Molecular simulation of methane adsorption behavior in different shale Kerogen types[J]. Natural Gas Industry, 2017, 37(12):18-25. doi:10.3787/j.issn.1000-0976.-2017.12.003 [20] 孙扬. 天然气藏超临界CO2 埋存及提高天然气采收率机理[D]. 成都:西南石油大学, 2012. SUN Yang. Sequestration of supercritical CO2 in natural gas reservoir and mechanism of enhancing gas recovery[D]. Chengdu:Southwest Petroleum University, 2012. [21] SIDIQ H, AMIN R. Super critical CO2-methane relative permeability investigation[C]. SPE 137884, 2010. doi:10.2118/137884-MS [22] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8):16-21. doi:10.2118/09-08-16-DA [23] 吴克柳,李相方,陈掌星. 页岩气纳米孔气体传输模型[J]. 石油学报, 2015, 36(7):837-848. doi:10.7623/-syxb201507008 WU Keliu, LI Xiangfang, CHEN Zhangxing. A model for gas transport through nanopores of shale gas reservoir[J]. Acta Petrolei Sinica, 2015, 36(7):837-848. doi:10.7623/-syxb201507008 [24] 景莎莎. 砂岩微孔隙中CO2/CH4 传质过程的分子模拟研究[D]. 成都:西南石油大学, 2015. JING Shasha. Molecular simulation study of CO2/CH4 mass transfer process in sandstone micro pore[D]. Chengdu:Southwest Petroleum University, 2015. [25] KANG Yili, CHEN Mingjun, LI Xiangchen, et al. Laboratory measurement and interpretation of nonlinear gas flow in shale[J]. International Journal of Modern Physics C, 2015, 26(6):1550063. doi:10.1142/S0129183115500631 [26] 葛洪魁,申颍浩,宋岩,等. 页岩纳米孔隙气体流动的滑脱效应[J]. 天然气工业, 2014, 34(7):46-54. doi:10.3787/j.issn.1000-0976.2014.07.008 GE Hongkui, SHEN Yinhao, SONG Yan, et al. Slippage effect of shale gas flow in nanoscale pores[J]. Natural Gas Industry, 2014, 34(7):46-54. doi:10.3787/j.issn.1000-0976.2014.07.008 [27] 曹成,李天太,刘刚,等. 考虑吸附滑脱和自由分子流动效应的页岩基质渗透率计算模型[J]. 西安石油大学学报(自然科学版),2015,30(5):48-53. doi:10.3969/-j.issn.1673-064X.2015.05.008 CAO Cheng, LI Tiantai, LIU Gang, et al. Permeability calculation model of shale matrix with adsorption, slippage and free molecule flow effects[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2015, 30(5):48-53. doi:10.3969/j.issn.1673-064X.2015.05.008 [28] 张艳玉,李冬冬,孙晓飞,等. 实际状态下的页岩气表观渗透率计算新模型[J]. 天然气工业, 2017, 37(11):53-60. doi:10.3787/j.issn.1000-0976.2017.11.007 ZHANG Yanyu, LI Dongdong, SUN Xiaofei, et al. A new model for calculating the apparent permeability of shale gas in the real state[J]. Natural Gas Industry, 2017, 37(11):53-60. doi:10.3787/j.issn.1000-0976.2017.11.007 [29] 王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质, 2014, 35(3):425-430. doi:10.11743/ogg201418 WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3):425-430. doi:10.11743/ogg201418 |