[1] 秦同洛,李汤玉,陈元千. 实用油藏工程方法[M]. 北京:石油工业出版社, 1989. QIN Tongluo, LI Tangyu, CHEN Yuanqian. Practical reservoir engineering method[M]. Beijing:Petroleum Industry Press, 1989. [2] 何建民. 油水相对渗透率曲线异常影响因素探讨[J]. 油气地质与采收率, 2009, 16(2):74-76, 80. doi:10.-3969/j.issn.1009-9603.2009.02.023 HE Jianmin. Influencing factors of abnormal oil/water relative permeability curve[J]. Petroleum Geology and Recovery Efficiency, 2009, 16(2):74-76, 80. doi:10.3969/j.-issn.1009-9603.2009.02.023 [3] 杨宇,周文,邱坤泰,等. 计算相对渗透率曲线的新方法[J]. 油气地质与采收率, 2010, 17(2):105-107. doi:10.3969/j.issn.1009-9603.2010.02.030 YANG Yu, ZHOU Wen, QIU Kuntai, et al. A new method of calculation relative permeability curve[J]. Petroleum Geology and Recovery Efficiency, 2010, 17(2):105-107. doi:10.3969/j.issn.1009-9603.2010.02.030 [4] 蒋明,宋富霞,郭发军,等. 利用水驱特征曲线计算相对渗透率曲线[J]. 新疆石油地质, 1999, 20(5):418-421. JIANG Ming, SONG Fuxia, GUO Fajun, et al. Computation of relative permeability curve by using waterdrive curve[J]. Xinjiang Petroleum Geology, 1999, 20(5):418-421. [5] 吕新东,冯文光,杨宇,等. 利用动态数据计算相渗曲线的新方法[J]. 特种油气藏, 2009, 16(5):65-66, 75. doi:10.3969/j.issn.1006-6535.2009.05.018 LÜ Xindong, FENG Wenguang, YANG Yu, et al. A new method of calculation relative permeability curve with performance data[J]. Special Oil and Gas Reservoirs, 2009, 16(5):65-66, 75. doi:10.3969/j.issn.1006-6535.-2009.05.018 [6] 阎静华,许寻,杜永波. 计算相渗曲线的新方法-甲型水驱曲线法[J]. 断块油气田, 2001, 8(1):38-40. doi:10.3969/j.issn.1005-8907.2001.01.013 YAN Jinghua, XU Xun, DU Yongbo. A new method of calculation the relative permeability curve:The first water drive characteristic curve[J]. Fault-Block Oil & Gas Field, 2001, 8(1):38-40. doi:10.3969/j.issn.1005-8907.-2001.01.013 [7] 杜殿发,林新宇,巴忠臣,等. 利用甲型水驱特征曲线计算相对渗透率曲线[J]. 特种油气藏, 2013, 20(5):93-96. doi:10.3969/j.issn.1006-6535.2013.05.020 DU Dianfa, LIN Xinyu, BA Zhongchen, et al. Calculation of relative permeability curve with Type A characteristic curve of water drive[J]. Special Oil and Gas Reservoirs, 2013, 20(5):93-96. doi:10.3969/j.issn.1006-6535.-2013.05.020 [8] 梁尚斌,赵海洋,宋宏伟,等. 利用生产数据计算油藏相对渗透率曲线方法[J]. 大庆石油地质与开发, 2005, 24(2):24-25. doi:10.3969/j.issn.1000-3754.2005.02.008 LIANG Shangbin, ZHAO Haiyang, SONG Hongwei, et al. Method of calculating relative permeability curve by production data[J]. Petroleum Geology & Oilfield Development in Daqing, 2005, 24(2):24-25. doi:10.3969/j.issn.-1000-3754.2005.02.008 [9] 王怒涛,陈浩,王陶,等. 用生产数据计算油藏相对渗透率曲线[J]. 西南石油学院学报, 2005, 27(5):26-28. doi:10.3863/j.issn.1674-5086.2005.05.007 WANG Nutao, CHEN Hao, WANG Tao, et al. Calculation method of relative permeability curve from production data[J]. Journal of Southwest Petroleum Institute, 2005, 27(5):26-28. doi:10.3863/j.issn.1674-5086.2005.05.007 [10] 刘显太. 中高渗透砂岩油藏储层物性时变数值模拟技术[J]. 油气地质与采收率, 2011, 18(5):58-62. doi:10.3969/j.issn.1009-9603.2011.05.016 LIU Xiantai. Study on numerical simulation technology based on time varying physical properties in min-high permeability sandstone reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(5):58-62. doi:10.3969/j.-issn.1009-9603.2011.05.016 [11] 崔传智,耿正玲,王延忠,等. 水驱油藏高含水期渗透率的动态分布计算模型及应用[J]. 中国石油大学学报(自然科学版), 2012, 36(4):118-122. doi:10.3969/j.issn.-1673-5005.2012.04.022 CUI Chuanzhi, GENG Zhengling, WANG Yanzhong, et al. Calculation model of dynamic permeability distribution and its application to water drive reservoir at high water cut stage[J]. Journal of China University of Petroleum, 2012, 36(4):118-122. doi:10.3969/j.issn.1673-5005.2012.04.022 [12] 陈丹磬,李金宜,朱文森,等. 海上疏松砂岩稠油油藏水驱后储层参数变化规律实验[J]. 中国海上油气,2016,28(5):54-60. doi:10.11935/j.issn.1673-1506.-2016.05.009 CHEN Danqing, LI Jinyi, ZHU Wensen, et. al. Experimental research on reservoir parameters variation after water flooding for offshore unconsolidated sandstone heavy oil reservoirs[J]. China Offshore Oil and Gas, 2016, 28(5):54-60. doi:10.11935/j.issn.1673-1506.2016.05.009 [13] 文馨,戴宗,王华,等. 海相砂岩油藏长期水驱后储层物性变化规律[J]. 特种油气藏, 2017, 24(1):157-161. doi:10.3969/j.issn.1006-6535.2017.01.032 WEN Xin, DAI Zong, WANG Hua, et al. Physical properties of marine sandstone reservoir after long-term waterflooding[J]. Special Oil and Gas Reservoirs, 2017, 24(1):157-161. doi:10.3969/j.issn.1006-6535.2017.01.032 [14] 张金庆. 水驱油田产量预测模型[M]. 北京:石油工业出版社, 2012. ZHANG Jinqing. The prediction model of oilfield production water flooding[M]. Beijing:Petroleum Industry Press, 2012. [15] 王小林,于立君,唐玮,等. 特高含水期含水率与采出程度关系式[J]. 特种油气藏, 2015, 22(5):104-106. doi:10.3969/j.issn.1006-6535.2015.05.022 WANG Xiaolin, YU Lijun, TANG Wei, et al. Relationship between water-cut and recovery degree in ultrahigh water-cut stage[J]. Special Oil and Gas Reservoirs, 2015, 22(5):104-106. doi:10.3969/j.issn.1006-6535.-2015.05.022 [16] 宋兆杰,李治平,赖枫鹏,等. 高含水期油田水驱特征曲线关系式的理论推导[J]. 石油勘探与开发, 2013, 40(2):201-208. doi:10.11698/PED.2013.02.09 SONG Zhaojie, LI Zhiping, LAI Fengpeng, et al. Derivation of water flooding characteristic curve for high watercut oilfields[J]. Petroleum Exploration and Development, 2013, 40(2):201-208. doi:10.11698/PED.2013.02.09 [17] 孙红霞. 高含水期水驱特征曲线上翘新认识[J]. 特种油气藏, 2016, 23(1):92-95. doi:10.3969/j.issn.1006-6535.2016.01.020 SUN Hongxia. New understanding of upward waterflooding characteristic curve in high water-cut stage[J]. Special Oil and Gas Reservoirs, 2016, 23(1):92-95. doi:10.-3969/j.issn.1006-6535.2016.01.020 [18] 陈元千,王惠芝. 丙型水驱曲线的扩展推导及其在埕北油田的应用[J]. 中国海上油气, 2004, 16(6):392-394. doi:10.3969/j.issn.1673-1506.2004.06.008 CHEN Yuanqian, WANG Huizhi. An extended derivation of type C water drive curve and its application in Chengbei Oilfield[J]. China Offshore Oil and Gas, 2004, 16(6):392-394. doi:10.3969/j.issn.1673-1506.2004.06.008 [19] 俞启泰,赵明,林志芳. 水驱砂岩油田驱油效率和波及系数研究(一)[J]. 石油勘探与开发, 1989, 1(2):48-52. YU Qitai, ZHAO Ming, LIN Zhifang. A study of the displacement efficiency and the conformance factor in waterflooded sandstone reservoirs in China[J]. Petroleum Exploration and Development, 1989, 1(2):48-52. [20] 闫正和,罗东红,许庆华. 南海东部海域油田开发模式的创新与应用实践[J]. 中国海上油气, 2014, 26(3):72-77. YAN Zhenghe, LUO Donghong, XU Qinghua. The innovation and application of the development models for the offshore oil fields in the eastern South China Sea[J]. China Offshore Oil and Gas, 2014, 26(3):72-77. [21] 刘晨,张金庆,周文胜,等. 海上高含水油田群液量优化模型的建立及应用[J]. 中国海上油气, 2016, 28(6):46-52. doi:10.11935/j.issn.1673-1506.2016.06.008 LIU Chen, ZHANG Jinqing, ZHOU Wensheng, et al. Modeling of liquid production optimization in high water cut offshore oilfield group and its application[J]. China Offshore Oil and Gas, 2016, 28(6):46-52. doi:10.-11935/j.issn.1673-1506.2016.06.008 [22] 肖康,穆龙新,姜汉桥,等. 水驱优势通道下微观潜力分布及改变流线挖潜[J]. 西南石油大学学报(自然科学版),2017,39(5):92-100. doi:10.11885/j.issn.1674-5086.2015.08.28.01 XIAO Kang, MU Longxin, JIANG Hanqiao, et al. Microscopic distribution of potentially recoverable oil during the waterflooding of preferential petroleum migration pathways and echanced oil recovery through streamline alteration[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2014, 26(3):72-77. doi:10.11885/j.issn.1674-5086.2015.08.28.01 [23] 洪楚侨,王雯娟,鲁瑞斌,等. 强水驱油藏渗透率动态变化规律定量预测方法[J]. 西南石油大学学报(自然科学版), 2018, 40(5):113-121. doi:10.11885/j.issn.-1674-5086.2017.10.09.01 HONG Chuqiao, WANG Wenjuan, LU Ruibin, et al. A quantitative method to predict the dynamic variation in permeability of oil reservoirs during waterflooding and oil displacement[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(5):113-121. doi:10.11885/j.issn.1674-5086.2017.10.09.01 [24] 宋睿,汪尧,刘建军. 岩石孔隙结构表征与流体输运可视化研究进展[J]. 西南石油大学学报(自然科学版), 2018, 40(6):85-105. doi:10.11885/j.issn.1674-5086.2018.07.18.03 SONG Rui, WANG Yao, LIU Jianjun. Microscopic pore structure characterization and fluids transport visualization of reservoir rock[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(6):85-105. doi:10.11885/j.issn.1674-5086.2018.07.18.03 [25] 宁宁,李怡超,刘洪林,等. 不同渗透率岩芯孔径分布与可动流体研究[J]. 西南石油大学学报(自然科学版), 2018, 40(2):91-97. doi:10.11885/j.issn.1674-5086.2016.04.25.01 NING Ning, LI Yichao, LIU Honglin, et al. Study on influence of permeability and distribution of pore diameters in rock cores on measurement of mobile fluid saturation[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2018, 40(2):91-97. doi:10.11885/j.-issn.1674-5086.2016.04.25.01 |