[1] JIANG Yongdong, LUO Yahuang, LU Yiyu, et al. Effects of supercritical CO2 treatment time, pressure, and temperature on microstructure of shale[J]. Energy, 2016, 97:173-181. doi:10.1016/j.energy.2015.12.124 [2] YANG Feng, NING Zhengfu, LIU Huiqing. Fractal characteristics of shales from a shale gas reservoir in the Sichuan Basin, China[J]. Fuel, 2014, 115:378-384. doi:10.1016/j.fuel.2013.07.040 [3] 贾爱林,位云生,金亦秋. 中国海相页岩气开发评价关键技术进展[J]. 石油勘探与开发, 2016, 43(6):949-955. doi:10.11698/PED.2016.06.11 JIA Ailin, WEI Yunsheng, JIN Yiqiu. Progress in key technologies for evaluating marine shale gas development in China[J]. Petroleum Exploration and Development, 2016, 43(6):949-955. doi:10.11698/PED.2016.06.11 [4] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1):1-9. doi:10.11911/syztjs.2018001 LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of SINOPEC[J]. Petroleum Drilling Techniques, 2018, 46(1):1-9. doi:10.11911/syztjs.2018001 [5] 贾承造,郑民,张永峰. 中国非常规油气资源与勘探开发前景[J]. 石油勘探与开发, 2012, 39(2):129-136. doi:10.1016/S1876-3804(12)60026-3 JIA Chengzao, ZHENG Min, ZHANG Yongfeng. Unconventional hydrocarbon resources in China and the prospect of exploration and development[J]. Petroleum Exploration and Development, 2012, 39(2):129-136. doi:10.1016/S1876-3804(12)60026-3 [6] 邹才能,董大忠,王玉满,等. 中国页岩气特征、挑战及前景(二)[J]. 石油勘探与开发, 2016, 43(2):166-178. doi:10.11698/PED.2016.02.02 ZOU Caineng, DONG Dazhong, WANG Yuman, et al. Shale gas in China:Characteristics, challenges and prospects (II)[J]. Petroleum Exploration and Development, 2016, 43(2):166-178. doi:10.11698/PED.2016.02.-02 [7] JIANG Yongdong, QIN Chao, KANG Zhipeng, et al. Experimental study of supercritical CO2 fracturing on initiation pressure and fracture propagation in shale under different triaxial stress conditions[J]. Journal of Natural Gas Science and Engineering, 2018, 55:382-394. doi:10.1016/j.jngse.2018.04.022 [8] MA Tianshou, LIU Yang, CHEN Ping, et al. Fractureinitiation pressure prediction for transversely isotropic formations[J]. Journal of Petroleum Science and Engineering, 2019, 176:821-835. doi:10.1016/j.petrol.2019.01.090 [9] DING Yi, LIU Xiangjun, LUO Pingya. The analytical model of hydraulic fracture initiation for perforated borehole in fractured formation[J]. Journal of Petroleum Science and Engineering, 2018, 162:502-512. doi:10.1016/j.petrol.2017.10.008 [10] HUANG Jinsong, GRIFFITHS D V, WONG Sau-Wai. Initiation pressure, location and orientation of hydraulic fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 49:59-67. doi:10.1016/j.ijrmms.-2011.11.014 [11] HOSSAIN M M, RAHMAN M K, RAHMAN S S. Hydraulic fracture initiation and propagation:roles of wellbore trajectory, perforation and stress regimes[J]. Journal of Petroleum Science and Engineering, 2000, 27(3-4):129-149. doi:10.1016/S0920-4105(00)00056-5 [12] GALE J F W, REED R M, HOLDER J. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments[J]. American Association of Petroleum Geologists Bulletin, 2007, 91(4):603-622. doi:10.1306/11010606061 [13] HUBBERT M K, WILLIS D G W. Mechanics of hydraulic fracturing[J]. AIME Petroleum Transactions, 1957, 210:153-168. doi:10.1080/14786435708241195 [14] HAIMSON B. Initiation and extension of hydraulic fractures in rocks[C]. SPE 1710-PA, 1967. doi:10.2118/1710-PA [15] EATON B A. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10):1353-1360. doi:10.2118/2163-PA [16] ANDERSON R A, INGRAM D S, ZANIER A M. Fracture gradient prediction and its application in oilfield operations[J]. Journal of Petroleum Technology, 1969, 21(10):1353-1360. doi:10.2118/2163-PA [17] DAINES S R. Prediction of fracture pressures for wildcat wells[J]. Journal of Petroleum Technology, 1982, 34(4):863-872. doi:10.2118/9254-PA [18] CHEN Guizhong, CHENEVERT M E, SHARMA M M, et al. A study of wellbore stability in shales including poroelastic, chemical, and thermal effects[J]. Journal of Petroleum Science and Engineering, 2003, 38(3-4):167-176. doi:10.1016/S0920-4105(03)00030-5 [19] 金衍,张旭东,陈勉. 天然裂缝地层中垂直井水力裂缝起裂压力模型研究[J]. 石油学报, 2005, 26(6):113-118. doi:10.3321/j.issn:0253-2697.2005.06.026 JIN Yan, ZHANG Xudong, CHEN Mian. Initiation pressure models for hydraulic fracturing of vertical wells in naturally fractured formation[J]. Acta Petrolei Sinica, 2005, 26(6):113-118. doi:10.3321/j.issn:0253-2697.-2005.06.026 [20] WU Bisheng, ZHANG Xi, JEFFREY R G, et al. A semianalytic solution of a wellbore in a non-isothermal lowpermeability porous medium under non-hydrostatic stresses[J]. International Journal of Solids and Structures, 2012, 49(13):1472-1484. doi:10.1016/j.ijsolstr.2012.02.035 [21] JIN Xiaochun, SHAH N S, ROEGIERS J C, et al. Breakdown pressure determination:A fracture mechanics approach[C]. SPE 166434-MS, 2013. doi:10.2118/166434-MS [22] ZHANG Jincai, YIN Shangxian. Fracture gradient prediction:An overview and an improved method[J]. Petroleum Science, 2017, 14(4):720-730. doi:10.1007/s12182-017-0182-1 [23] ZENG Fanhui, CHENG Xiaozhao, GUO Jianchun, et al. Investigation of the initiation pressure and fracture geometry of fractured deviated wells[J]. Journal of Petroleum Science and Engineering, 2018, 165:412-427. doi:10.1016/j.petrol.2018.02.029 [24] SAYERS C M. The effect of anisotropy on the Young's moduli and Poisson's ratios of shales[J]. Geophysical Prospecting, 2013, 61(2):416-426. doi:10.1111/j.1365-2478.2012.01130.x [25] JIN Zhefei, LI Weixin, JIN Congrui, et al. Anisotropic elastic, strength, and fracture properties of Marcellus shale[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 109:124-137. doi:10.1016/j.ijrmms.2018.06.009 [26] MA Tianshou, ZHANG Q B, CHEN Ping, et al. Fracture pressure model for inclined wells in layered formations with anisotropic rock strengths[J]. Journal of Petroleum Science and Engineering, 2017, 149:393-408.10.1016/j.petrol.2016.10.050 [27] MA Tianshou, WU Bisheng, FU Jianhong, et al. Fracture pressure prediction for layered formations with anisotropic rock strengths[J]. Journal of Natural Gas Science and Engineering, 2017, 38:485-503. doi:10.1016/j.jngse.2017.-01.002 [28] WANG Jun, XIE Lingzhi, XIE Heping, et al. Effect of layer orientation on acoustic emission characteristics of anisotropic shale in Brazilian tests[J]. Journal of Natural Gas Science and Engineering, 2016, 36:1120-1129. doi:10.1016/j.jngse.-2016.03.046 [29] ZHANG S W, SHOU K J, XIAN X F, et al. Fractal characteristics and acoustic emission of anisotropic shale in Brazilian tests[J]. Tunnelling and Underground Space Technology, 2018, 71:298-308. doi:10.1016/j.tust.2017.-08.031 [30] AADNOY B S. Modeling of the stability of highly inclined boreholes in anisotropic rock formations[J]. SPE 16526-MS, 1988. doi:10.2118/16526-MS [31] ONG S H, ROEGIERS J C. Fracture initiation from inclined wellbores in anisotropic formations[C]. SPE 29993-MS, 1995. doi:10.2118/29993-MS [32] KHAN S, WILLIAMS R E, ANSARI S, et al. Impact of mechanical anisotropy on design of hydraulic fracturing in shales[C]. SPE 162138-MS, 2012. doi:10.2118/162138-MS [33] 李小刚,易良平,杨兆中. 横观各向同性地层水平井井壁拟三维应力场计算模型[J]. 岩石力学与工程学报,2017,36(6):1452-1459. doi:10.13722/j.cnki.jrme.-2016.1046 LI Xiaogang, YI Liangping, YANG Zhaozhong. A pseudo three-dimensional stress model of horizontal borewell in transversely isotropic formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(6):1452-1459. doi:10.13722/j.cnki.jrme.2016.1046 [34] 马天寿. 页岩气水平井井眼坍塌失稳机理研究[D]. 成都:西南石油大学, 2015. MA Tianshou. Research on the mechanisms of borehole collapse instability for horizontal wells in shale gas reservoirs[D]. Chengdu:Southwest Petroleum University, 2015. |