[1] 邹才能,翟光明,张光亚,等. 全球常规-非常规油气形成分布、资源潜力及趋势预测[J]. 石油勘探与开发, 2015, 42(1):13-25. doi:10.11698/PED.2015.01.02 ZOU Caineng, ZHAI Guangming, ZHANG Guangya, et al. Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources[J]. Petroleum Exploration and Development, 2015, 42(1):13-25. doi:10.11698/PED.2015.01.02 [2] 王红军,马锋,童晓光,等. 全球非常规油气资源评价[J]. 石油勘探与开发, 2016, 43(6):850-862. doi:10.11698/PED.2016.06.02 WANG Hongjun, MA Feng, TONG Xiaoguang, et al. Assessment of global unconventional oil and gas resources[J]. Petroleum Exploration and Development, 2016, 43(6):850-862. doi:10.11698/PED.2016.06.02 [3] 吴奇,胥云,王晓泉,等. 非常规油气藏体积改造技术——内涵、优化设计与实现[J]. 石油勘探与开发, 2012, 39(3):352-358. WU Qi, XU Yun, WANG Xiaoquan, et al. Volume fracturing technology of unconventional reservoirs-connotation, optimization design and implementation[J]. Petroleum Exploration and Development, 2012, 39(3):352-358. [4] 吴奇,胥云,张守良,等. 非常规油气藏体积改造技术核心理论与优化设计关键[J]. 石油学报, 2014, 35(4):706-714. doi:10.7623/syxb201404011 WU Qi, XU Yun, ZHANG Shouliang, et al. The core theories and key optimization designs of volume stimulation technology for unconventional reservoirs[J]. Acta Petrolei Sinica, 2014, 35(4):706-714. doi:10.7623/syxb201404011 [5] WILLIAMS J D, CLARKSON C R. Stochastic modeling of multi-phase flowback from multi-fractured horizontal tight oil wells[C]. SPE 167232-MS, 2016. doi:10.2118/167232-MS [6] 胥云,雷群,陈铭,等. 体积改造技术理论研究进展与发展方向[J]. 石油勘探与开发, 2018, 45(5):874-887. doi:10.11698/PED.2018.05.14 XU Yun, LEI Qun, CHEN Ming, et al. Progress and development of volume stimulation techniques[J]. Petroleum Exploration and Development, 2018, 45(5):874-887. doi:10.11698/PED.2018.05.14 [7] SABERHOSSEINI S E, AHANGARI K, MOHAMMADREZAEI H, et al. Optimization of the horizontal-well multiple hydraulic fracturing operation in a low-permeability carbonate reservoir using fully coupled XFEM model[J]. International Journal of Rock Mechanics and Mining Sciences, 2019, 114:33-45. doi:10.1016/j.ijrmms.2018.09.007 [8] 关振良,杨庆军,段成刚,等. 油藏数值模拟技术现状分析[J]. 地质科技情报, 2000, 19(1):73-76. doi:10.3969/j.issn.1000-7849.2000.01.017 GUAN Zhenliang, YANG Qingjun, DUAN Chenggang, et al. Present situation and growing tendency of oil reservoir simulation technique[J]. Geological Science and Technology Information, 2000, 19(1):73-76. doi:10.3969/j.issn.1000-7849.2000.01.017 [9] CIPOLLA C L, FITZPATRICK T, WILLIAMS M J, et al. Seismic to simulation for unconventional reservoir development[C]. SPE 146876-MS, 2011. doi:10.2118/146876MS [10] SHENG Mao, LI Gensheng, SHAH S N, et al. Extended finite element modeling of multiscale flow in fractured shale gas reservoirs[C]. SPE 159919-MS, 2012. doi:10.2118/159919-MS [11] WENG Xiaowei, OLGA K, DIMITRY C, et al. Applying complex fracture model and integrated workflow in unconventional reservoirs[J]. Journal of Petroleum Science and Engineering, 2014, 124:468-483. doi:10.1016/j.petrol.2014.09.021 [12] WARPINSKI N R, MAYERHOFER M J, VINCENT M C, et al. Stimulating unconventional reservoirs:Maximizing network growth while optimizing fracture conductivity[J]. Journal of Canadian Petroleum Technology, 2009, 48(10):39-51. doi:10.2118/114173-PA [13] MAYERHOFER M J, LOLON E P, YOUNGBLOOD J E, et al. Integration of microseismic fracture mapping results with numerical fracture network production modeling in the Barnett Shale[C]. SPE 102013-MS, 2006. doi:10.2118/102103-MS [14] CIPOLLA C L, LOLON E P, MAYERHOFER M J, et al. Fracture design considerations in horizontal wells drilled in unconventional gas reservoirs[C]. SPE 119366-MS, 2009. doi:10.2118/119366-MS [15] CIPOLLA C L, LOLON E P, ERDLE J C, et al. Reservoir modeling in shale gas reservoirs[J]. SPE Reservoir Evaluation & Engineering, 2010, 13(4):848-854. doi:10.2118/125530-MS [16] MONGALVY V, CHAPUT E, AGARWAL S, et al. A new numerical methodology for shale reservoir performance evaluation[C]. SPE 144154-MS, 2011. doi:10.2118/144154-MS [17] ARVIND K H, FRANZ D, MARTIN V C, et al. Volumetric fracture modeling approach(VFMA):Incorporating microseismic data in the simulation of shale gas reservoirs[C]. SPE 134683-MS, 2010. doi:10.2118/134683MS [18] FISHER M K, HEINZE J R, HARRIS C D, et al. Optimizing horizontal completion techniques in the Barnett shale using microseismic fracture mapping[C]. SPE 90051-MS, 2004. doi:10.2118/90051-MS [19] MAITY D, CIEZOBKA J, EISENLORD S. Assessment of in-situ proppant placement in SRV using through-fracture core sampling at HFTS[C]. SPE 2902364-MS, 2018. doi:10.15530/URTEC-2018-2902364 [20] WARPINSKI N R, TEUFEL L W. Influence of geologic discontinuities on hydraulic fracture propagation[J]. Journal of Petroleum Technology, 1987, 8(3):150-158. doi:10.2118/13224-PA [21] LOPEZ M, ALBERTO. Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model[J]. Journal of Petroleum Science and Engineering, 2018, 162:822-834. doi:10.1016/j.petrol.2017.11.009 [22] ZHOU Wentao, BANERJEE R, POE B D, et al. Semianalytical production simulation of complex hydraulic fracture networks[C]. SPE 157367-MS, 2012. doi:10.2118/157367-MS [23] 埃克诺米德斯. 油藏增产措施[M]. 3版. 北京:石油工业出版社, 2002:215. ECONOMIDES. Reservoir stimulation[M]. 3rd ed. Beijing:Petroleum Industry Press, 2002:215. [24] WEDDLE P, GRIGGIN L, PEARSON C M. Mining the Bakken II-pushing the envelope with extreme limited entry perforating[C]. SPE 189880-MS, 2018. doi:10.2118/189880-MS [25] DAHL J, NGUYEN P, DUSTERHOFT R, et al. Application of micro-proppant to enhance well production in unconventional reservoirs:Laboratory and field results[C]. SPE 174060-MS, 2015. doi:10.2118/174060-MS [26] CALVIN J, GRIESER B, BACHMAN T. Enhancement of well production in the SCOOP woodford shale through the application of microproppant[C]. SPE 184863-MS, 2017. doi:10.2118/184863-MS |