[1] ABARASI H. A review of technologies for transporting heavy crude oil and bitumen via pipelines[J]. Journal of Petroleum Exploration and Production Technology, 2014, 4(3):327-336. doi:10.1007/s13202-013-0086-6 [2] BERA A, BELHAJ H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery:A comprehensive review[J]. Journal of Natural Gas Science and Engineering, 2016, 34:1284-1309. doi:10.1016/j.jngse.2016.08.023 [3] 杨兆中,朱静怡,李小刚,等. 微波加热技术在非常规油资源中的研究现状与展望[J]. 化工进展,2016,35(11):3478-3483. doi:10.16085/j.issn.1000-6613.2016.11.014 YANG Zhaozhong, ZHU Jingyi, LI Xiaogang, et al. Progress in researches on microwave heating in unconventional oil resources[J]. Chemical Industry and Engineering Progress, 2016, 35(11):3478-3483. doi:10.16085/j.issn.1000-6613.2016.11.014 [4] MUTYALA S, FAIRBRIDGE C, JOCELYN PARÉ J R, et al. Microwave applications to oil sands and petroleum:A review[J]. Fuel Processing Technology, 2010, 91(2):127-135. doi:10.1016/j.fuproc.2009.09.009 [5] PATEL H, SHAH S, AHMED R, et al. Effects of nanoparticles and temperature on heavy oil viscosity[J]. Journal of Petroleum Science and Engineering, 2018, 167:819-828. doi:10.1016/j.petrol.2018.04.069 [6] KHALIL M, LEE R L, LIU Ning, et al. Hematite nanoparticles in aquathermolysis:A desulfurization study of thiophene[J]. Fuel, 2015, 145(2):214-220. doi:10.1016/j.fuel.2014.12.047 [7] 赵法军,刘灏亮,张新宇,等. 稠油水热裂解中的金属纳米粒子催化剂研究进展[J]. 油田化学, 2017, 34(3):567-570. doi:10.19346/j.cnki.1000-4092.2017.03.036 ZHAO Fajun, LIU Haoliang, ZHANG Xinyu, et al. Catalysts of metal nano-particles for aquathermolysis of heavy crude oil[J]. Oilfield Chemistry, 2017, 34(3):567-570. doi:10.19346/j.cnki.1000-4092.2017.03.036 [8] YANG Zhancun, LIU Xueliang, LI Xiaohong, et al. Preparation of silica supported nanoscale zero valence iron and its feasibility in viscosity reduction of heavy oil[J]. Micro & Nano Letters, 2014, 9(5):355-358. doi:10.1049/mnl.2014.0083 [9] 张宏民. 纳米复合材料稠油降粘剂的研制与性能评价[D]. 济南:山东大学, 2015. doi:10.7666/d.Y2792176 ZHANG Hongmin. Study on synthesis and properties of nano-composite viscosity reducer in heavy oil[J]. Ji'nan:Shandong University, 2015. doi:10.7666/d.Y2792176 [10] 汪双清,沈斌,林壬子. 微波作用下稠油粘度变化及其化学因素探讨[J]. 石油实验地质, 2010, 32(6):615-620. doi:10.3969/j.issn.1001-6112.2010.06.019 WANG Shuangqing, SHEN Bin, LIN Renzi. Viscosity and chemical composition changes of heavy oils after microwave processing[J]. Petroleum Geology & Experiment, 2010, 32(6):615-620. doi:10.3969/j.issn.1001-6112.2010.06.019 [11] SHANG Hui, YUE Yude, ZHANG Jie, et al. Effect of microwave irradiation on the viscosity of crude oil:A view at the molecular level[J]. Fuel Processing Technology, 2018, 170:44-52. doi:10.1016/j.fuproc.2017.10.021 [12] LI Kewen, HOU Binchi, WANG Lei, et al. Application of carbon nano catalysts in upgrading heavy crude oil assisted with microwave heating[J]. Nano Letters, 2014, 14(6):3002-3008. doi:10.1021/nl500484d [13] LI Hanyong, CUI Kexin, JIN Ling, et al. Experimental study on the viscosity reduction of heavy oil with nanocatalyst by microwave heating under low reaction temperature[J]. Journal of Petroleum Science and Engineering, 2018, 170:374-382. doi:10.1016/j.petrol.2018.06.078 [14] 李爱华,王桂兵. 稠油开采新工艺及新技术探讨[J]. 石化技术, 2019, 26(9):112-113. doi:10.3969/j.issn.1006-0235.2019.09.064 LI Aihua, WANG Guibing. Discussion on new technology and new technology of heavy oil exploitation[J]. Petrochemical Industry Technology, 2019, 26(9):112-113. doi:10.3969/j.issn.1006-0235.2019.09.064 [15] 樊泽霞,赵福麟,王杰祥,等. 超稠油供氢水热裂解改质降黏研究[J]. 燃料化学学报, 2006, 34(3):315-318. doi:10.3969/j.issn.0253-2409.2006.03.011 FAN Zexia, ZHAO Fulin, WANG Jiexiang, et al. Upgrading and viscosity reduction of super heavy oil by aquathermolysis with hydrogen donor[J]. Journal of Fuel Chemistry and Technology, 2006, 34(3):315-318. doi:10.3969/j.issn.0253-2409.2006.03.011 [16] FERREIRA S L C, BRUNS R E, FERREIRA H S, et al. Box-behnken design:An alternative for the optimization of analytical methods[J]. Analytica Chimica Acta, 2007, 597(2):179-186. doi:10.1016/j.aca.2007.07.011 [17] 李美蓉,于光松,安波,等. 降黏剂对稠油乳化反相点的影响规律[J]. 油田化学, 2018, 35(3):503-507, 516. doi:10.19346/j.cnki.1000-4092.2018.03.023 LI Meirong, YU Guangsong, AN Bo, et al. Effect of viscosity reducer on emulsification reverse phase point of heavy oil[J]. Oilfield Chemistry, 2018, 35(3):503-507, 516. doi:10.19346/j.cnki.1000-4092.2018.03.023 [18] 黄启玉,张帆,张劲军,等. 原油水乳状液制备条件研究[J]. 油气储运, 2007, 26(6):49-51. doi:10.3969/j.issn.1000-8241-D.2007.06.014 HUANG Qiyu, ZHANG Fan, ZHANG Jinjun, et al. Research on preparation condition of water emulsion for crude oil[J]. Oil and Gas Storage and Transportation, 2007, 26(6):49-51. doi:10.3969/j.issn.1000-8241-D.2007.06.014 [19] 吴梅,张慧,姚闽娜,等. 超声波微波辅助浓硫酸催化油酸制备生物柴油[J]. 中国油脂,2017,42(7):97-100. doi:10.3969/j.issn.1003-7969.2017.07.021 WU Mei, ZHANG Hui, YAO Minna, et al. Ultrasoundmicrowave-assisted preparation of biodiesel from oleic acid using concentrated sulfuric acid as catalyst[J]. China Oils and Fats, 2017, 42(7):97-100. doi:10.3969/j.issn.1003-7969.2017.07.021 [20] 李莉,张赛,何强,等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8):41-45. doi:10.3969/j.issn.1006-7167.2015.08.011 LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 34(8):41-45. doi:10.3969/j.issn.1006-7167.2015.08.011 [21] NASRI Z, MOZAFARI M. Multivariable statistical analysis and optimization of iranian heavy crude oil upgrading using microwave technology by response surface methodology(RSM)[J]. Journal of Petroleum Science and Engineering, 2018, 161:427-444. doi:10.1016/j.petrol.2017.12.004 [22] PEI Haihua, ZHANG Guicai, GE Jijiang, et al. Investigation of synergy between nanoparticle and surfactant in sta-bilizing oil-in-water emulsions for improved heavy oil recovery[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2015, 484:478-484. doi:10.1016/j.colsurfa.2015.08.025 [23] 戴静君,李益良,张立新,等. 稠油微波降黏效果实验研究[J]. 北京石油化工学院学报, 2013, 21(3):1-3. doi:10.3969/j.issn.1008-2565.2013.03.001 DAI Jingjun, LI Yiliang, ZHANG Lixin, et al. The experiment study of heavy crude oil viscosity reduction effect by microwave[J]. Journal of Beijing Institute of Petrochemical Technology, 2013, 21(3):1-3. doi:10.3969/j.issn.1008-2565.2013.03.001 [24] BINNER E R, ROBINSON J P, SILVESTER S A, et al. Investigation into the mechanisms by which microwave heating enhances separation of water-in-oil emulsions[J]. Fuel, 2014, 116:516-521. doi:10.1016/j.fuel.2013.08.042 [25] AKBARI S, NOUR A H, SAIDATUL S J, et al. Demulsification of water-in-crude oil emulsion via conventional heating and microwave heating technology in their optimum conditions[J]. Australian Journal of Basic and Applied Sciences, 2016, 10(4):66-74. [26] LI Ning, YAN Bo, XIAO Xianming. A review of laboratory-scale research on upgrading heavy oil in supercritical water[J]. Energies, 2015, 8(8):8962-8989. doi:10.3390/en8088962 [27] GREFF J, BABADAGLI T. Use of nano-metal particles as catalyst under electromagnetic heating for insitu heavy oil recovery[J]. Journal of Petroleum Science and Engineering, 2013, 112:258-265. doi:10.1016/j.petrol.2013.11.012 [28] MUTYALA S, FAIRBRIDGE C, PARÉ J R. Microwave applications to oil sands and petroleum:A review[J]. Fuel Processing Technology, 2010, 91(2):127-135. doi:10.1016/j.fuproc.2009.09.009 [29] SANTOS D, ROCHA E C L, ROBSON L M, et al. Demulsification of water-in-crude oil emulsions using single mode and multimode microwave irradiation[J]. Separation and Purification Technology, 2017, 189:347-356. doi:10.1016/j.seppur.2017.08.028 [30] 崔可心. 纳米催化剂辅助微波加热降粘实验研究[D]. 北京:中国石油大学, 2019. CUI Kexin. Experimental study on viscosity reduction by microwave heating assisted by nano-catalyst[D]. Beijing:China University of Petroleum, 2019. |