Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2020, Vol. 42 ›› Issue (6): 1-15.DOI: 10.11885/j.issn.1674-5086.2020.06.05.03
• A Special Issue on Artificial Intelligence Technology & Application in Oil and Gas Fields • Next Articles
MIN Chao1,2, DAI Boren1,2, ZHANG Xinhui1,2, DU Jianping3
Received:
2020-06-05
Published:
2020-12-21
CLC Number:
MIN Chao, DAI Boren, ZHANG Xinhui, DU Jianping. A Review of the Application Progress of Machine Learning in Oil and Gas Industry[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 1-15.
[1] 陈仲为. 深度学习的发展以及应用[J]. 现代计算机, 2019(17):46-50. doi:10.3969/j.issn.1007-1423.2019.17.010 CHEN Zhongwei. Development and application of deep learning[J]. Modern Computer, 2019(17):46-50. doi:10.3969/j.issn.1007-1423.2019.17.010 [2] 骞宇澄,刘昭策. 深度学习的实现与发展——从神经网络到机器学习[J]. 电子技术与软件工程, 2017(11):30-31. QIAN Yucheng, LIU Zhaoce. Realization and development of deep learning:From neural network to machine learning[J]. Electronic Technology and Software Engineering, 2017(11):30-31. [3] 王斌. 人工智能技术在石油工程领域的最新应用[J]. 信息系统工程, 2018(10):95. WANG Bin. The latest application of artificial intelligence technology in the field of petroleum engineering[J]. Information System Engineering, 2018(10):95. [4] 佩德罗·多明戈斯. 终极算法:机器学习和人工智能如何重塑世界[M]. 黄方萍,译. 北京:中信出版社, 2017. DOMINGOS P. Ultimate algorithms:How machine learning and artificial intelligence are reshaping the world[M]. HUANG Fangping, Trans.. Beijing:Citic Press, 2017. [5] 刘伟,闫娜. 人工智能在石油工程领域应用及影响[J]. 石油科技论坛, 2018, 37(4):32-40. doi:10.3969/j.issn.1002-302x.2018.04.006 LIU Wei, YAN Na. Application and influence of artificial intelligence in the field of petroleum engineering[J]. Petroleum Science and Technology Forum, 2018, 37(4):32-40. doi:10.3969/j.issn.1002-302x.2018.04.006 [6] 陈强,李晓磊. 国际石油工业界POCS及其相关项目的进展[J]. 石油地球物理勘探, 1995, 30(2):223-229. CHEN Qiang, LI Xiaolei. Progress of POCS and related projects in international petroleum industry[J]. Petroleum Geophysical Exploration, 1995, 30(2):223-229. [7] MCCORMACK M P. Neural networks in the petroleum industry[C]. SEG Technical Program Expanded Abstracts, 1991. doi:10.1190/1.1889172 [8] GUO Yi, HANSEN R O, HARTHILL N. Feature recognition from potential fields using neural networks[C]. SEG Technical Program Expanded Abstracts, 1992. doi:10.1190/1.1822039 [9] NAZI G M, ASHENAYI K, LEA J F, et al. Application of artificial neural network to pump card diagnosis[C]. SPE 25420-PA, 1994. doi:10.2118/25420-PA [10] ALI J K. Neural networks:A new tool for the petroleum industry?[C]. SPE 27561-MS, 1994. doi:10.2118/27561 MS [11] 鲍慎毅,高朝晖. 人工智能注采调配及其在孤东油田开发中的应用[J]. 石油工业计算机应用,1995(1):45-51. BAO Shenyi, GAO Zhaohui. Artificial intelligence injection, production and deployment and its application in Gudong Oilfield development[J]. Computer Application in Petroleum Industry, 1995(1):45-51. [12] MOHAGHEGH S. Virtual-intelligence applications in petroleum engineering:Part 1-Artificial neural networks[C]. SPE 58046-JPT, 2000. doi:10.2118/58046-JPT [13] MOHAGHEGH S. Virtual-intelligence applications in petroleum engineering:Part 2-Evolutionary computing[C]. SPE 61925-JPT, 2000. doi:10.2118/61925-JPT [14] MOHAGHEGH S. Virtual-intelligence applications in petroleum engineering:Part 3-Fuzzy logic[C]. SPE 62415-JPT, 2000. doi:10.2118/62415-JPT [15] 林伯韬,郭建成. 人工智能在石油工业中的应用现状探讨[J]. 石油科学通报, 2019, 4(4):403-413. doi:10.3969/j.issn.2096-1693.2019.04.036 LIN Botao, GUO Jiancheng. Application of artificial intelligence in petroleum industry[J]. Chinese Petroleum Science Bulletin, 2019, 4(4):403-413. doi:10.3969/j.issn.2096-1693.2019.04.036 [16] HANSEN K V. Neural networks for primary reflection identification[C]. SEG Technical Program Expanded Abstracts, 1993. doi:10.1190/1.1822450 [17] FOGG A N. Petro-seismic classification using neural networks:UK onshore[C]. SEG Technical Program Expanded Abstracts, 2000. doi:10.1190/1.1815670 [18] CLIFFORD A, AMINZADEH F. Gas detection from absorption attributes and amplitude versus offset with artificial neural networks in grand bay field[C]. SEG Technical Program Expanded Abstracts, 2011. doi:10.1190/1.3627988 [19] OGIESOBA O, AMBROSE W. Seismic attributes investigation of depositional environments and hydrocarbon sweet-spot distribution in Serbin Field, Taylor Group, Central Texas[C]. SEG Technical Program Expanded Abstracts, 2017. doi:10.1190/segam2017-17559583.1 [20] RICHARDSON A. Generative adversarial networks for model order reduction in seismic full-waveform inversion[C]. arXiv:1806.00828v1, 2018. [21] LUKAS M, OLIVIER D, MARTIN J. Blunt, Stochastic seismic waveform inversion using generative adversarial networks as a geological prior[C]. arXiv:1806.03720v1, 2018. doi:10.3997/2214-4609.201803018 [22] ZHANG Tuanfeng, TILKE P, DUPONT E, et al. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks[J]. Petroleum Science, 2019, 16:541-549. doi:10.1007/s12182-019-0328-4 [23] LI Shucai, LIU Bin, REN Yuxiao, et al. Deep-learning inversion of seismic data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020, 58(3):2135-2149. doi:10.1109/TGRS.2019.2953473 [24] GUPTA K D, VALLEGA V, MANIAR H, et al. A deeplearning approach for borehole image interpretation[C]. SPWLA 60th Annual Symposium, 2019. doi:10.30632/T60ALS-2019_BB [25] ERTEKIN T, SUN Qian. Artificial intelligence applica-tions in reservoir engineering:A status check[J]. Energies, 2019, 12(15):2897. doi:10.3390/en12152897 [26] NAZARI S, KUZMA H A, RECTOR J W. Predicting permeability from well log data and core measurements using support vector machines[C]. SEG Technical Program Expanded Abstracts, 2011. doi:10.1190/1.3627601 [27] ZHAO Tao, VERMA S, DEVEGOWDA D, et al. TOC estimation in the barnett shale from triple combo logs using support vector machine[C]. Society of Exploration Geophysicists International Exposition and 85th Annual Meeting, 2015. doi:10.1190/segam2015-5922788.1 [28] SCHLANSER K, GRANA D, CAMPBELL-STONE E. Petro-elastic facies classification in the marcellus shale by applying expectation maximization to measured well logs[C]. SEG Technical Program Expanded Abstracts, 2014. doi:10.1190/segam2014-0939.1 [29] ZHAO Tao, VERMA S, QI Jie, et al. Supervised and unsupervised learning:How machines can assist quantitative seismic interpretation[C]. SEG Technical Program Expanded Abstracts, 2015. doi:10.1190/segam2015-5924540.1 [30] BESTAGINI P, LIPARI V, TUBARO S. A machine learning approach to facies classification using well logs[C]. SEG Technical Program Expanded Abstracts, 2017. doi:10.1190/segam2017-17729805.1 [31] AKINNIKAWE O, LYNE S, ROBERTS J. Synthetic well log generation using machine learning techniques[C]. Unconventional Resources Technology Conference, 2018. doi:10.15530/urtec-2018-2877021 [32] GUPTA I, RAI C, SONDERGELD C H, et al. Rock typing in eagle ford, barnett, and woodford formations[C]. SPE 189968-PA, 2018. doi:10.2118/189968-PA [33] AGAR S, GOTETI R, JOBE D, et al. Geologic risking with bayesian methods:Fracture case study in an unconventional setting[C]. GEO 2018 Conference, 2018. [34] JOBE T D, VITAL-BRAZIL E, KHAIT M. Geological feature prediction using image-based machine learning[C]. Society of Petrophysicists and Well-Log Analysts, 2018. doi:10.30632/PJV59N6-2018a1 [35] TSAI K C, HU Wenyi, WU Xuqing, et al. First-break automatic picking with deep semisupervised learning neural network[C]. SEG Technical Program Expanded Abstracts, 2018. doi:10.1190/segam2018-2998106.1 [36] ALQAHTANI N, ARMSTRONG R T, MOSTAGHIMI P. Deep learning convolutional neural networks to predict porous media properties[C]. SPE 191906-MS, 2018. doi:10.2118/191906-MS [37] ALFARRAJ M, ALREGIB G. Petrophysical property estimation from seismic data using recurrent neural networks[C]. SEG Technical Program Expanded Abstracts, 2018. doi:10.1190/segam2018-2995752.1 [38] LI Hao, MISRA S. Prediction of subsurface NMR T2 distribution from formation-mineral composition using variational autoencoder[C]. Society of Exploration Geophysicists, 2017. doi:10.1190/segam2017-17798488.1 [39] LI Hao, HE Jiabo, MISRA S. Data-driven in-situ geomechanical characterization in shale reservoirs[C]. SPE 191400-MS, 2018. doi:10.2118/191400-MS [40] AREHART R A. Drill-bit diagnosis with neural networks[C]. SPE 191400-MS. doi:10.2118/19558-PA [41] BILGESU H I, AL-RASHIDI A F, AMINIAN K, et al. An unconventional approach for drill-bit selection[C]. SPE 68089-MS, 2001. doi:10.2118/68089-MS [42] WANG Yanfang, SALEHI S. Drilling hydraulics optimization using neural networks[C]. SPE 173420-MS, 2015. doi:10.2118/173420-MS [43] MORAN D P, IBRAHIM H F, PURWANTO A, et al. Sophisticated ROP prediction technology based on neural network delivers accurate resultssophisticated rop prediction technology based on neural network delivers accurate results[C]. SPE 132010-MS, 2010. doi:10.2118/132010-MS [44] LIND Y B, KABIROVA A R. Artificial neural networks in drilling troubles prediction[C]. SPE 171274-MS, 2014. doi:10.2118/171274-MS [45] 丁昕炜,胡泽,葛亮,等. 基于压力传感器阵列的智能井水平段油管泄漏定位技术研究[J]. 仪表技术与传感器, 2016(3):79-82. DING Xinwei, HU Ze, GE Liang, et al. Research on oil pipe leak location technology in horizontal section of intelligent well based on pressure sensor array[J]. Instrumentation Technology and Sensors, 2016(3):79-82. [46] CAO Dingzhou, LOESEL C, PARANJI S. Rapid development of real-time drilling analytics system[C]. SPE 189595-MS, 2018. doi:10.2118/189595-MS [47] BEN Yuxing, JAMES C, CAO Dingzhou. Development and application of a real-time drilling state classification algorithm with machine learning[C]. URTEC-2019-253-MS, 2019. doi:10.15530/urtec-2019-253 [48] ALIYEV R, PAUL D. A novel application of artificial neural networks to predict rate of penetration[C]. SPE 195268-MS, 2019. doi:10.2118/195268-MS [49] AL-KHDHEEAWI E A, MAHDI D S, FENG Runhua. Lithology determination from drilling data using artificial neural network[C]. 53rd U S Rock Mechanics/Geomechanics Symposium, 2019. [50] ALARFAJ I, KHOUKHI A, EREN T. Application of advanced computational intelligence to rate of penetration prediction[C]. Sixth UKSim/AMSS European Symposium on Computer Modeling and Simulation, 2012. doi:10.1109/EMS.2012.79 [51] ELKATATNY S M. Determination the rheological properties of invert emulsion based mud on real time using artificial neural network[C]. SPE 182801-MS, 2016. doi:10.2118/182801-MS [52] LEITE C R A, LONGHIN G A, DE Sá C H M, et al. Artificial intelligence strategy minimizes lost circulation nonproductive time in Brazilian deep water pre-salt[C]. OTC-28034-MS, 2017. doi:10.4043/28034-MS [53] LIANG Haibo, LI Guoliang, LIANG Wenlong. Intelligent early warning model of early-stage overflow based on dynamic clustering[J]. Cluster Computing, 2017(3):1-12. doi:10.1007/s10586-017-1214-8 [54] LIANG Haibo, WANG Zhi. Application of an intelligent early-warning method based on DBSCAN clustering for drilling overflow accident[J]. Cluster Computing, 2018(1):1-10. doi:10.1007/s10586-017-1687-5 [55] HOFFIMANN J, MAO Youli, WESLEY A, et al. Sequence mining and pattern analysis in drilling reports with deep natural language processing[C]. arXiv:1712.01476v1, 2017. [56] XU Yankai, SUN Keli, XIE Hui, et al. Borehole resistivity measurement modeling using machine-learning techniques[J]. Petrophysics, 2018, 59(6):778-785. doi:10.30632/PJV59N6-2018a3 [57] SHEN Qiuyang, CHEN Jiefu, WANG Hanming. Datadriven interpretation of ultradeep azimuthal propagation resistivity measurements:Transdimensional stochastic inversion and uncertainty quantification[C]. SPWLA-2018-v59n6a4, 2018. [58] HAN Jiahang, SUN Yanji, ZHANG Shaoning. A data driven approach of ROP prediction and drilling performance estimation[C]. IPTC-19430-MS, 2019. doi:10.2523/IPTC-19430-MS [59] GAN Chao, CAO Weihua, WU Min, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019. [60] DENNEY D. Artificial neural networks identify restimulation candidates[C]. SPE 0200-0044-JPT, 2000. doi:10.2118/0200-0044-JPT [61] 曾德仁,彭妥,黄诚,等. 试井设计风险评价[J]. 西南石油学院学报, 2001, 23(4):23-25. ZENG Deren, PENG Tuo, HUANG Cheng, et al. The well test design risk assessment[J]. Journal of Southwest Petroleum Institute, 2001, 23(4):23-25. [62] FAGA A T, OYENEYIN B M. Application of neural networks for improved gravel-pack design[C]. SPE 58722-MS, 2000. doi:10.2118/58722-MS [63] AL-FATTAH S M, STARTZMAN R A. Predicting natural gas production using artificial neural network[C]. SPE 68593-MS, 2001. doi:10.2118/68593-MS [64] SALEHI S, HARELAND G, DEHKORDI K K, et al. Casing collapse risk assessment and depth prediction with a neural network system approach[J]. Journal of Petroleum Science and Engineering, 2009, 69(1):156-162. doi:10.1016/j.petrol.2009.08.011 [65] ADEYEMI B J, SULAIMON A A. Predicting wax formation using artificial neural network[C]. SPE 163026-MS, 2012. doi:10.2118/163026-MS [66] RANJAN A, VERMA S, SINGH Y. Gas lift optimization using artificial neural network[C]. SPE 172610-MS, 2015. doi:10.2118/172610-MS [67] CHU Hongyang, LIAO Xinwei, ZHANG Wenlong, et al. Applications of artificial neural networks in gas injection[C]. SPE 191606-18RPTC-MS, 2018. doi:10.2118/191606-18RPTC-MS [68] KISS A, FRUHWIRTH R K, PONGRATZ R, et al. Formation breakdown pressure prediction with artificial neural networks[C]. SPE 191391-18IHFT-MS, 2018. doi:10.2118/191391-18IHFT-MS [69] BRUYELLE J, GUÉRILLOT D. Optimization of waterflooding strategy using artificial neural networks[C]. SPE 196643-MS, 2019. doi:10.2118/196643-MS [70] 邴绍强. 基于人工智能的抽油机井结蜡预警方法[J]. 石油钻探技术, 2019, 47(4):97-103. doi:10.11911/syztjs.20190937103. BING Shaoqiang. Early warning method of paraffin deposit in pumping wells based on artificial intelligence[J]. Oil Drilling Technology, 2019, 47(4):97-103. doi:10.11911/syztjs.2019093 [71] 樊浩杰. 基于人工智能算法的示功图智能识别研究[D]. 洛阳:河南科技大学, 2019. FAN Haojie. Research on intelligent recognition of indicator graph based on artificial intelligence algorithm[D]. Luoyang:Henan University of Science and Technology, 2019. [72] 侯春华. 基于长短期记忆神经网络的油田新井产油量预测方法[J]. 油气地质与采收率, 2019, 26(3):105-110. doi:10.13673/j.cnki.cn37-1359/te.2019.03.014 HOU Chunhua. Prediction method of oil production in new wells based on long and short term memory neu-ral network[J]. Oil and Gas Geology and Recovery, 2019, 26(3):105-110. doi:10.13673/j.cnki.cn37-1359/te.2019.03.014 [73] YANG Zhaozhong, YANG Chenxi, LI Xiaogang, et al. Pattern recognition of the vertical hydraulic fracture shapes in coalbed methane reservoirs based on hierarchical bilstm network[J]. Complexity, 2020(9):1-12. doi:10.1155/2020/1734048 [74] SALEHI S, HARELAND G, DEHKORDI K K, et al. Casing collapse risk assessment and depth prediction with a neural network system approach[J]. Journal of Petroleumence & Engineering, 2009, 69(1-2):156-162. doi:10.1016/j.petrol.2009.08.011 [75] NIETO J, JANEGA G, BATLAI B, et al. An integrated approach to optimizing completions and protecting parent wells in the Montney Formation, N E B C[C]. 6th Unconventional Resources Technology Conference, 2018. doi:10.15530/urtec-2018-2902707 [76] YANG H S, KIM N S. Determination of rock properties by accelerated neural network[C]. ARMA-96-1567, 1996. [77] DENNEY D. Neural network for time-lapse seismic reservoir monitoring[C]. SPE 0801-0044-JPT, 2001. doi:10.2118/0801-0044-JPT [78] ELSHAFEI M, HAMADA G M. Neural network identification of hydrocarbon potential of shaly sand reservoirs[C]. SPE 110959-MS, 2007. doi:10.2118/110959 MS [79] AL-BULUSHI N, ARAUJO M, KRAAIJVELD M, et al. Predicting water saturation using artificial neural networks (ANNs)[C]. SPWLA Middle East Regional Symposium, 2007. [80] KOHLI A, ARORA P. Application of artificial neural networks for well logs[C]. International Petroleum Technology Conference, 2014. doi:10.2523/IPTC-17475-MS [81] 贾虎,邓力珲. 基于流线聚类人工智能方法的水驱油藏流场识别[J]. 石油勘探与开发, 2018, 45(2):312-319. doi:10.11698/PED.2018.02.14 JIA Hu, DENG Lihui. Flow field identification of water drive reservoirs based on streamline clustering artificial intelligence[J]. Oil Exploration and Development, 2018, 45(2):312-319. doi:10.11698/PED.2018.02.14 [82] ALCOCER Y, RODRIGUES P. Neural networks models for estimation of fluid properties[C]. SPE 69624-MS, 2001. doi:10.2118/69624-MS [83] AYOUB M A, RAJA A I, ALMARHOUN M. Evaluation of below bubble point viscosity correlations & construction of a new neural network model[C]. SPE 108439-MS, 2007. doi:10.2118/108439-MS [84] HEGEMAN P S, DONG Chengli, VAROTSIS N, et al. Application of artificial neural networks to downhole fluid analysis[C]. SPE 123423-PA, 2009. doi:10.2118/123423-PA [85] DENNEY D. Improved production-testing performance:Deepwater West Africa[C]. SPE 0603-0043-JPT, 2003. doi:10.2118/0603-0043-JPT [86] DANG C, NGHIEM L, FEDUTENKO E, et al. Application of artificial intelligence for mechanistic modeling and probabilistic forecasting of hybrid low salinity chemical flooding[C]. SPE 191474-MS, 2018. doi:10.2118/191474-MS [87] RASHIDI M, HAJIPOUR M, ASADI A. Correlation between static and dynamic elastic modulus of limestone formations using artificial neural networks[C]. 52nd U. S. Rock Mechanics/Geomechanics Symposium, 2018. [88] RASHIDI M, ASADI A. An artificial intelligence approach in estimation of formation pore pressure by critical drilling data[J]. 52nd U.S. Rock Mechanics/Geomechanics Symposium, 2018. [89] HAMAM H, ERTEKIN T. A Generalized continuous carbon dioxide injection design and screening tool for naturally fractured reservoirs of varying oil compositions[C]. SPE 190371-MS, 2018. doi:10.2118/190371-MS [90] KHAN M R, TARIQ Z, ABDULRAHEEM A. Machine learning derived correlation to determine water saturation in complex lithologies[C]. SPE 192307-MS, 2018. doi:10.2118/192307-MS [91] WANG Kun, LUO Jia, YAN Lin, et al. Artificial neural network accelerated flash calculation for compositional simulations[C]. SPE 193896-MS, 2019. doi:10.2118/193896-MS [92] VENNA A R, LU Yinghui, WALTERS D, et al. Supportvector-machine phase classification of downhole leak flows based on acoustic signals[J]. Petrophysics, 2018, 59(6):841-848. doi:10.30632/PJV59N6-2018a8 [93] ZIMMERMANN T. Machine-learning-based automatic well-log depth matching[J]. Petrophysics, 2018, 59(6):863-872. doi:10.30632/PJV59N6-2018a10 [94] CADEI L, MONTINI M, LANDI F, et al. Big data advanced analytics to forecast operational upsets in upstream production system[C]. SPE 193190-MS, 2018. doi:10.2118/193190-MS [95] MULUNJKAR A M, DESHPANDE A P, STEINKE S, et al. Operational excellence and product reliability enhancement through big data analytics[C]. OTC-29513-MS, 2019. doi:10.4043/29513-MS [96] BHOWMIK S. Digital twin of subsea pipelines:Concep-tual design integrating iot, machine learning and data analytics[C]. OTC-29455-MS, 2019. doi:10.4043/29455-MS [97] 吴钧,于晓红. 大庆油田生产经营管理与辅助决策系统设计与实施[J]. 大庆石油地质与开发, 2019, 38(5):294300. doi:10.19597/j.issn.1000-3754.201907023 WU Jun, YU Xiaohong. Design and implementation of production management and decision support system for Daqing Oilfield[J]. Daqing Petroleum Geology and Development, 2019, 38(5):294-300. doi:10.19597/j.issn.1000-3754.201907023 |
[1] | HUANG Xuri, DAI Yue, XU Yungui, TANG Jing. Seismic Inversion Experiments Based on Deep Learning Algorithm Using Different Datasets [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 16-25. |
[2] | ZHONG Yihua, WANG Shuning, LUO Lan, YANG Jinlian, YUE Yongpeng. Knowledge Mining for Oilfield Development Index Prediction Model Using Deep Learning [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 63-74. |
[3] | HUANG Cheng, PAN Wenjin. Research and Application of Oil Multi-peak Model Based on Machine Learning [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 75-81. |
[4] | ZHANG Hengru, ZHU Kelin, XU Yuanyuan, QIAO Ying. Granular Computing for Pumping Well Parameter Optimization [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 115-123. |
[5] | FANG Yu, CAO Xuemei, LI Binqian, MIN Fan, QIAO Ying. Active Learning Method for Abnormal Operating Conditions of Natural Gas Gathering System [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2020, 42(6): 124-132. |
[6] | ZHOU Jian, SONG Yanjie, JIANG Yanjiao, SUN Qinshuai, JING Yanqing. The Research Progress of Well Logging Evaluation of Marine Natural Gas Hydrate [J]. 西南石油大学学报(自然科学版), 2020, 42(2): 85-93. |
[7] | ZENG De-ren PENG Tuo HUANG Cheng WANG Yong-qing.. RISK EVALUATION OF WELL TEST DESIGN [J]. 西南石油大学学报(自然科学版), 2001, 23(4): 23-25. |
[8] | LIU Xian-tao LIU Xian-feng;. CARRYING OUT PROGRAM EVALUATION AND REVIEW TECHNIQUE [J]. 西南石油大学学报(自然科学版), 2001, 23(2): 70-71. |
[9] | Cao Xie-dong Zhao Jin-zhou Li Yun et al . A METHOD OF GETTING KNOWLEDGE BASED ON TH FUZZY NERVE NETWORK [J]. 西南石油大学学报(自然科学版), 2000, 22(3): 98-100. |
[10] | Chen Wei Duan Yong-gang Liu Hui Xie Jun. ARTIFICIAL INTELLIGENCE TO ASSIST WELL TESTING INTERPRETATION [J]. 西南石油大学学报(自然科学版), 1999, 21(2): 5-8. |
[11] | Chen Wei Duan Yonggang Jang Hong. Neural Network Structure Design Based on Genetic Algorithms [J]. 西南石油大学学报(自然科学版), 1998, 20(1): 96-98. |
[12] | Li Ren-chuan Dong Bao-zhen. The Review and Approach of the SWPI Campus Layout and Designing [J]. 西南石油大学学报(自然科学版), 1994, 16(4): 119-125. |
[13] | Mei Wenrong. RECOGNITION RESEARCH OF COMPLICATED CASES AND ACCIDENTS IN DRILLING OPERATION BASED ON BAM NEURAL NETWORK [J]. 西南石油大学学报(自然科学版), 1993, 15(1): 49-55. |
[14] | Cheng Suimin Li Ruyong Wang Weixing. AN EXPERT SYSTEM IN WELL TEST ANALYSIS [J]. 西南石油大学学报(自然科学版), 1992, 14(1): 1-7. |
[15] | Wang Wei-xing Cheng Sui-min li Ru-yong Wang Hao. USE OF ARTIFICIAL INTELLIGENCE IN WELL TEST INTERPRETATION [J]. 西南石油大学学报(自然科学版), 1991, 13(2): 31-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||