[1] 刘莹,张进. 抽油机井系统效率提升研究[J]. 机械设计与制造, 2016(7):269-272. doi:10.19356/j.cnki.1001-3997.2016.07.069 LIU Ying, ZHANG Jin. Researches of enhancing the efficiency of pumping well system[J]. Machinery Design & Manufacture, 2016(7):269-272. doi:10.19356/j.cnki. 1001-3997.2016.07.069 [2] 陈蠡,范崇海,丁利. 参数优化对提高机采系统效率的重要性探讨[J]. 胜利油田职大学学报, 2006, 20(2):48-49. CHEN Li, FAN Conghai, DING Li. Parameter optimization to improve the efficiency of machine mining system[J]. Journal of Shengli Oilfield Staff University, 2006, 20(2):48-49. [3] 李庆龙. 抽油机井参数调整对系统效率的影响[J]. 石油石化节能,2018,8(9):13-14. doi:10.3969/j.issn.2095-1493.2018.09.005 LI Qinglong. Influence of pumping well parameter adjustment on system efficiency[J]. Energy Conservation in Petroleum & Petrochemical Industry, 2018, 8(9):13-14. doi:10.3969/j.issn.2095-1493.2018.09.005 [4] 高倩. 多源数字油田数据与油田数据融合及方法研究[D]. 西安:长安大学, 2015. GAO Qian. Multi-source digital oilfield data and oilfield data fusin its methodology research[D]. Xi'an:Chang'an University, 2015. [5] 张伟. 基于油田多源数据分析的油藏管理研究[D]. 西安:长安大学, 2013. ZHANG Wei. Reservoir management research based on multisource data analysis of oilfield[D]. Xi'an:Chang'an University, 2013. [6] 檀朝东,陈见成,刘志海,等. 大数据挖掘技术在石油工程的应用前景展望[J]. 中国石油和化工, 2015(1):49-51. doi:10.3969/j.issn.1008-1852.2015.01.028 TAN Chaodong, CHEN Jiancheng, LIU Zhihai, et al. Prospect of application of big data mining technology in petroleum engineering[J]. China Petroleum and Chemical Industry, 2015(1):49-51. doi:10.3969/j.issn.1008-1852.2015.01.028 [7] 王辉萍. 基于抽油机井能耗数据的聚类分析方法的研究及应用[D]. 北京:中国石油大学(北京), 2017. WANG Huiping. Research and application of clustering based on energy consumption data of rod pumping well system[D]. Beijing:China University of Petroleum, 2017. [8] 梁吉业,钱宇华,李德玉,等. 大数据挖掘的粒计算理论与方法[J]. 中国科学(信息科学), 2015, 45(11):1355-1369. doi:10.1360/N112015-00092 LIANG Jiye, QIAN Yuhua, LI Deyu, et al. Theory and method of granular computing for big data mining[J]. Scientia Sinica Informationis, 2015, 45(11):1355-1369. doi:10.1360/N112015-00092 [9] LI Jinhai, MEI Changlin, XU Weihua, et al. Concept learning via granular computing:A cognitive viewpoint[J]. Information Sciences, 2015, 298:447-467. doi:10.1016/j.ins.2014.12.010 [10] ZHAO Hong, MIN Fan, ZHU William, et al. Test-costsensitive attribute reduction based on neighborhood rough set[C]. 2011 IEEE International Conference on Granular Computing, 2011. doi:10.1109/GRC.2011.6122701 [11] HE Yuwan, ZHANG Hengru, MIN Fan. A teacher-costsensitive decision-theoretic rough set model[C]. International Conference on Rough Sets and Knowledge Technology, 2015:275-285. doi:10.1007/978-3-319-257549_25 [12] ADOMAVICIUS G, TUZHILIN A. Toward the next generation of recommender systems:A survey of the state-ofthe-art and possible extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6):734-749. doi:10.1109/TKDE.2005.99 [13] WU Weizhi, LEUNG Y. Theory and applications of granular labelled partitions in multi-scale decision tables[J]. Information Sciences, 2011, 181(18):3878-3897. doi:10.1016/j.ins.2011.04.047 [14] LI Tianrui, RUAN Da, SHEN Yongjun, et al. A new weighting approach based on rough set theory and granular computing for road safety indicator analysis[J]. Computational Intelligence, 2015, 32(4):517-534. doi:10.1111/coin.12061 [15] PAWLAK Z. Rough sets:Theoretical aspects of reasoning about data[M]. Berlin:Springer Science & Business Media, 2012. [16] KRYSZKIEWICZ M. Rules in incomplete information systems[J]. Information sciences, 1999, 113(3-4):271-292. doi:10.1016/S0020-0255(98)10065-8 [17] LEUNG Y, LI Deyu. Maximal consistent block technique for rule acquisition in incomplete information systems[J]. Information Sciences, 2003, 153:85-106. doi:10.1016/S0020-0255(03)00061-6 [18] RESNICK P, VARIAN H R. Recommender systems[J]. Communications of the ACM, 1997, 40(3):56-58. doi:10.1145/245108.245121 [19] HERLOCKER J, KONSTAN J A, RIEDL J. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms[J]. Information Retrieval, 2002, 5(4):287-310. doi:10.1023/A:1020443909834 [20] LEMIRE D, MACLACHLAN A. Slope one predictors for online rating-based collaborative filtering[J]. Proceedings of the 2005 SIAM International Conference on Data Min-ing, 2005. doi:10.1137/1.9781611972757.43 [21] ZHANG Hengru, MIN Fan, HE Xu. Aggregated recommendation through random forests[J]. The Scientific World Journal, 2014:649596. doi:10.1155/2014/649596 [22] ZHANG Hengru, MIN Fan, HE Xu, et al. A hybrid recommender system based on user-recommender interaction[J]. Mathematical Problems in Engineering, 2015:145636. doi:10.1155/2015/145636 [23] BOBADILLA J, ORTEGA F, HERNANDO A, et al. Recommender systems survey[J]. Knowledge-Based Systems, 2013, 46:109-132. doi:10.1016/j.knosys.2013.03.012 [24] LIU Xuying, ZHOU Zhihua. The influence of class imbalance on cost-sensitive learning:An empirical study[C]. Sixth International Conference on Data Mining (ICDM'06), 2006:970-974. [25] YANG Xibei, QI Yunsong, SONG Xiaoning, et al. Test cost sensitive multi granulation rough set:Model and minimal cost selection[J]. Information Sciences, 2013, 250:184-199. doi:10.1016/j.ins.2013.06.057 [26] ZHANG Xianyong, MIAO Duoqian. Quantitative information architecture, granular computing and rough set models in the double-quantitative approximation space of precision and grade[J]. Information Sciences, 2014, 268:147-168. doi:10.1016/j.ins.2013.09.020 [27] JIA Xiuyi, LIAO Wenhe, TANG Zhenmin, et al. Minimum cost attributions reduction in decision-theoretic rough set models[J]. Information Sciences, 2013, 219:151-167. doi:10.1016/j.ins.2012.07.010 |