[1] 石玉江. 智能油田在中国的研究现状分析[J]. 海峡科技与产业, 2016(12):81-83. doi:10.3969/j.issn.1006-3013.2016.12.029 SHI Yujiang. Analysis on the research status of intelligent oilfield in China[J]. Technology and Industry Across the Straits, 2016(12):81-83. doi:10.3969/j.issn.1006-3013.2016.12.029 [2] 邹才能,潘松圻,党刘栓. 论能源革命与科技使命[J]. 西南石油大学学报(自然科学版), 2019, 41(3):1-12. doi:10.11885/j.issn.1674-5086.2019.04.07.01 ZOU Caineng, PAN Songqi, DANG Liushuan. On the energy revolution and the mission of science and technology[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2019, 41(3):1-12. doi:10.11885/j.issn.1674-5086.2019.04.07.01 [3] MA Huiyun, YU Chenggang, DONG Liangliang, et al. Review of intelligent well technology[J]. Petroleum, 2020, 6(3):226-233. doi:10.1016/j.petlm.2019.11.003 [4] 赵鸿阳. 基于深度学习的电子病历命名实体识别的研究与实现[J]. 软件, 2019, 40(8):208-211. doi:10.3969/j.issn.1003-6970.2019.08.047 ZHAO Hongyang. Research and implementation of named entity recognition of electronic medical records based on deep learning[J]. Computer Engineering & Software, 2019, 40(8):208-211. doi:10.3969/j.issn.1003-6970.2019.08.047 [5] BIKEL D M, MILLER S, SCHWARTZ R, et al. Nymble:A high-performance learning name-finder[C]. Proceedings of the Fifth Conference on Applied Natural Language Processing. Stroudsburg:Association for Computational Linguistics, 1997:194-201. doi:10.3115/974557.974586 [6] BIKEL D M, SCHWARTZ R, WEISCHEDEL R M. An algorithm that learns what's in a name[J]. Machine Learning, 1999, 34(1-3):211-231. doi:10.1023/A:1007558221122 [7] BORTHWICK A. A maximum entropy approach to named entity recognition[D]. New York:New York University, 1999. [8] MCCALLUM A, LI Wei. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]. Stroudsburg:Association for Computational Linguistics, 2003, 4:188-191. doi:10.3115/1119176.1119206 [9] ISOZAKI H, KAZAWA H. Efficient support vector classifiers for named entity recognition[C]. Stroudsburg:Association for Computational Linguistics, 2002. [10] 刘浏,王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3):329-340. doi:10.3772/j.issn.1000-0135.2018.03.010 LIU Liu, Wang Dongbo. A review on named entity recognition[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(3):329-340. doi:10.3772/j.issn.1000-0135.2018.03.010 [11] 苏庆林,金刚,陈灵山. 非结构化数据库用于油田科技情报系统[J]. 油气田地面工程, 2005(2):50. SU Qinglin, JIN Gang, CHEN Lingshan. Unstructured database for oilfield science and technology information system[J]. Oil-Gas Field Surface Engineering, 2005(2):50. [12] 文必龙,李云静. 基于油田领域本体的信息抽取技术研究[J]. 计算机技术与发展, 2015, 25(7):226-229. doi:10.3969/j.issn.1673-629X.2015.07.051 WEN Bilong, LI Yunjing. Research on information extraction technology based on domain ontology in oilfield[J]. Computer Technology and Development, 2015, 25(7):226-229. doi:10.3969/j.issn.1673-629X.2015.07.051 [13] 李云静. 基于石油领域本体的Web信息抽取技术研究[D]. 大庆:东北石油大学, 2015. LI Yunjing. Research on web information extraction technology based on ontology of petroleum domain[D]. Daqing:Northeast Petroleum University, 2015. [14] LI Jianqiang, ZHAO Shenhe, YANG Jijiang, et al. WCPRNN:A novel RNN-based approach for Bio-NER in Chinese EMRs[J]. The Journal of Super Computing, 2018(6):1-18. doi:10.1007/s11227-017-2229-x [15] SHEN Dinghan, WANG Guoyin, WANG Wenlin, et al. Baseline needs more love:On simple word-embeddingbased models and associated pooling mechanisms[C]. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers), 2018:440-450. doi:10.18653/v1/P18-1041 [16] CASSEL M, LIMA F. Evaluating one-hot encoding finite state machines for SEU reliability in SRAM-based FPGAs[C]. 12th IEEE International On-Line Testing Symposium(IOLTS'06). Lake Como, Italy, 2006. doi:10.1109/IOLTS.2006.32 [17] 郁可人,傅云斌,董启文. 基于神经网络语言模型的分布式词向量研究进展[J]. 华东师范大学学报(自然科学版),2017(5):52-65,79. doi:10.3969/j.issn.1000-5641.2017.05.006 YU Keren, FU Yunbin, DONG Qiwen. Survey on distributed word embeddings based on neural network language models[J]. Journal of East China Normal University (Natural Science), 2017(5):52-65, 79. doi:10.3969/j.issn.1000-5641.2017.05.006 [18] 孟琦. 基于情感词强度极值的情感嵌入模型研究[D]. 哈尔滨:哈尔滨工程大学, 2019. MENG Qi. Research on sentiment embedding model based on the value of sentimental word intensity[D]. Harbin:Harbin Engineering University, 2019. [19] QIN Zengchang, CONG Yonghui, WAN Tao. Topic modeling of Chinese language beyond a bag-of-words[J]. Computer Speech & Language, 2016, 40:60-78. [20] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]. arXiv:1301.3781, 2013. [21] WANG Yan, WANG Jian, LIN Hongfei, et al. Bidirectional long short-term memory with CRF for detecting biomedical event trigger in FastText semantic space[J]. BMC Bioinformatics, 2018(S20):507. doi:10.1186/s12859-018-2543-1 [22] PENNINGTON J, SOCHER R, MANNING C D. Glove:Global vectors for word representation[C]. Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014. doi:10.3115/v1/D14-1162 [23] PETERS M E, NEUMANN M, IYYER M, et al. Deep contextualized word representations[C]. Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, New Orleans, Louisiana, 2018. doi:10.18653/v1/N18-1202 [24] RADFORD A, NARASIMHAN K, SALIMANS T, et al. Improving language understanding by generative pretraining[C]. https://s3-us-west-2.amazonaws.com/openaiassets/research-covers/language-unsupervised/language_understanding_paper.pdf [25] DEVLIN J, CHANG M W, LEE K, et al. Bert:Pre-training of deep bidirectional transformers for language understanding[C]. arXiv:1810.04805, 2018. [26] WU Yonghui, JIANG Min, LEI Jianbo, et al. Named entity recognition in chinese clinical text using deep neural network[J]. Studies in Health Technology and Informatics, 2015, 216:624-628. [27] MCCALLUM A, LI W. Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons[C]. Proceeding of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003.2003:188-191. [28] 李健龙,王盼卿,韩琪羽. 基于双向LSTM的军事命名实体识别[J]. 计算机工程与科学, 2019, 41(4):143-148. doi:10.3969/J.ISSN.1007-130x.2019.04.019 LI Jianlong, WANG Panqing, HAN Qiyu. Military named entity recognition based on bidirectional LSTM[J]. Computer Engineering & Science, 2019, 41(4):143-148. doi:10.3969/J.ISSN.1007-130x.2019.04.019 [29] 吴岸城. 神经网络与深度学习[M]. 北京:电子工业出版社, 2016. WU Ancheng. Neural network and deep learning[M]. Beijing:Publishing House of Electronics Industry, 2016. [30] 宗成庆. 统计自然语言处理[M]. 北京:清华大学出版社, 2013. ZONG Chengqing. Statistical natural language processing[M]. Beijing:Tsinghua University Press, 2013. [31] GRAVES A. Supervised sequence labelling with recurrent neural networks[M]. Berlin:Springer, 2012. doi:10.1007/978-3-642-24797-2 [32] 柏兵,侯霞,石松. 基于CRF和BI-LSTM的命名实体识别方法[J]. 北京信息科技大学学报(自然科学版), 2018, 33(6):27-33. doi:10.16508/j.cnki.11-5866/n.2018.06.006 BAI Bing, HOU Xia, SHI Song. Named entity recognition method based on CRF and BI-LSTM[J]. Journal of Beijing Information Science & Technology University, 2018, 33(6):27-33. doi:10.16508/j.cnki.11-5866/n.2018.06.006 |