Journal of Southwest Petroleum University(Science & Technology Edition) ›› 2021, Vol. 43 ›› Issue (6): 169-182.DOI: 10.11885/j.issn.1674-5086.2020.10.23.04
• A Special Issue of mechanics • Previous Articles Next Articles
ZHU Zhenyu1, WANG Qingyuan1,2, DAI Guangze3, ZHU Yilin4
Received:
2020-10-23
Published:
2022-01-08
CLC Number:
ZHU Zhenyu, WANG Qingyuan, DAI Guangze, ZHU Yilin. A Study on Wear and Fatigue of High-speed Railway Wheels[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 169-182.
[1] ZHANG Mingru, GU Haicheng. Microstructure and mechanical properties of railway wheels manufactured with low-medium carbon Si-Mn-Mo-V steel[J]. Journal of University of Science and Technology Beijing, Mineral, Metallurgy, Material, 2008, 15(2):125-131. doi:10.1016/s1005-8850(08)60025-0 [2] DEVANATHAN R, CLAYTON P. Rolling-sliding wear behaviour of three bainitic steels[J]. Wear, 1991, 151(2):255-267. doi:10.1016/0043-1648(91)90253-Q [3] CLAYTON P. The relations between wear behavior and basic material properties for pearlitic steels[J]. Wear, 1980, 60(1):75-93. doi:10.1016/0043-1648(80)90250-1 [4] KALOUSEK J, FEGREDO D M, LAUFER E E. The wear resistance and worn metallography of pearlite, bainite and tempered martensite rail steel microstructures of high hardness[J]. Wear, 1985, 105(3):199-222. doi:10.1016/0043-1648(85)90068-7 [5] KUZIAK R, ZYGMUNT T. A new method of rail head hardening of standard-gauge rails for improved wear and damage resistance[J]. Steel Research International, 2013, 84(1):13-19. doi:10.1002/srin.201200140 [6] FANG Xiuyang, ZHAO Yongxiang, LIU Huanwei. Study on fatigue failure mechanism at various temperatures of a high-speed railway wheel steel[J]. Materials Science and Engineering A, 2017, 696:299-314. doi:10.1016/j.msea.2017.04.042 [7] DONZELLA G, FACCOLI M, MAZZù A, et al. Progressive damage assessment in the near-surface layer of railway wheel-rail couple under cyclic contact[J]. Wear, 2011, 271(1-2):408-416. doi:10.1016/j.wear.2010.10.042 [8] SCIAMMARELLA C, CHEN R J S, GALLO P, et al. Experimental evaluation of rolling contact fatigue in railroad wheels[J]. International Journal of Fatigue, 2016, 91:158-170. doi:10.1016/j.ijfatigue.2016.05.035 [9] CARTER F W. On the action of a locomotive driving wheel[J]. Proceedings of the Royal Society A, 1926, 112:151-157. doi:10.1098/rspa.1926.0100 [10] LUNDBERG G, PALMGREN A. Dynamic capacity of rolling bearings[J]. Acta Polytechnica, 1947, 1(3):1-52. [11] CAVUTO A, MARTARELLI M, PANDARESE G, et al. Train wheel diagnostics by laser ultrasonics[J]. Measurement, 2016, 80:99-107. doi:10.1016/j.measurement.2015.11.014 [12] REZENDE A B, FONSECA S T D, FERNANDES F M, et al. Wear behavior of bainitic and pearlitic microstructures from microalloyed railway wheel steel[J]. Wear, 2020, 456-457:203377. doi:10.1016/j.wear.2020.203377 [13] HU Y, ZHOU L, DING H H, et al. Microstructure evolution of railway pearlitic wheel steels under rolling-sliding contact loading[J]. Tribology International, 2020, 154:106685. doi:10.1016/j.triboint.2020.106685 [14] ZENG Dongfang, LU Liantao, GONG Yanhua, et al. Optimization of strength and toughness of railway wheel steel by alloy design[J]. Materials and Design, 2016, 92:998-1006. doi:10.1016/j.matdes.2015.12.096 [15] EKBERG A, LINDQVIST R, OLOFSSON M. Multiaxial fatigue-a probabilistic analysis of initiation in cases of defined stress cycles[C]. Beijing:The Seventh International Fatigue Congress, 1999. [16] LI Y F, ZUO M J, LIN J H, et al. Fault detection method for railway wheel flat using an adaptive multiscale morphological filter[J]. Mechanical Systems and Signal Processing, 2017, 84:642-658. doi:10.1016/j.ymssp.2016.07.009 [17] LUNDÉN R, PAULSSON B. Wheel-rail interface handbook[M]. Boca Raton:Elsevier, 2009. [18] EKBERG A, ÅKESSON B, KABO E. Wheel/rail rolling contact fatigue:Probe, predict, prevent[J]. Wear, 2014, 314(1-2):2-12. doi:10.1016/j.wear.2013.12.004 [19] ZENG Dongfang, LU Liantao, ZHANG Jiwang, et al. Effect of micro-inclusions on subsurface-initiated rolling contact fatigue of a railway wheel[J]. Journal of Rail and Rapid Transit, 2016, 230(2):544-553. doi:10.1177/0954409714551808 [20] DIRKS B, ENBLOM R, BERG M. Prediction of wheel profile wear and crack growth-comparisons with measurements[J]. Wear, 2016, 366-367:84-94. doi:10.1016/j.wear.2016.06.026 [21] 金学松, 赵国堂, 梁树林, 等. 高速铁路轮轨磨损特征, 机理, 影响和对策——车轮踏面横向磨耗[J]. 机械工程学报, 2018, 54(4):3-13. doi:10.3901/JME.2018.04.003 JIN Xuesong, ZHAO Guotang, LIANG Shulin, et al. Characteristics, mechanisms, influences and counter measures of high speed wheel/rail wear:Transverse wear of wheel tread[J]. Journal of Mechanical Engineering, 2018, 54(4):3-13. doi:10.3901/JME.2018.04.003 [22] 朱海燕, 胡华涛, 尹必超, 等. 轨道车辆车轮多边形研究进展[J]. 交通运输工程学报, 2020, 20(1):102-119. doi:10.19818/j.cnki.1671-1637.2020.01.008 ZHU Haiyan, HU Huatao, YIN Bichao, et al. Research progress on wheel polygons of rail vehicles[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1):102-119. doi:10.19818/j.cnki.1671-1637.2020.01.008 [23] ENBLOM R, STICHEL S. Industrial implementation of novel procedures for the prediction of railway wheel surface deterioration[J]. Wear, 2011, 271(1-2):203-209. doi:10.1016/j.wear.2010.10.037 [24] ZHONG W, HU J J, LI Z B, et al. A study of rolling contact fatigue crack growth in U75V and U71 Mn rails[J]. Wear, 2011, 271(1-2):388-392. doi:10.1016/j.wear.2010.10.071 [25] RINGSBERG J W. Shear mode growth of short surfacebreaking RCF cracks[J]. Wear, 2005, 258(7-8):955-963. doi:10.1016/j.wear.2004.03.043 [26] DONZELLA G, MAZZÙA, PETROGALLI C. Competition between wear and rolling contact fatigue at the wheelrail interface:Some experimental evidence on rail steel[J]. Journal of Rail and Rapid Transit, 2009, 223(1):31-44. doi:10.1243/09544097JRRT161 [27] DONZELLA G, FACCOLI M, GHIDINI A, et al. The competitive role of wear and RCF in a rail steel[J]. Engineering Fracture Mechanics, 2005, 72(2):287-308. doi:10.1016/j.engfracmech.2004.04.011 [28] CONSTABLE T, BOELEN R, PERELOMA E V. The quest for improved wheel steels enters the martensitic phase[C]. Orlando:14th International Wheelset Congress, 2004. [29] LI Gen, HONG Zhiyuan, YAN Qingzhi. The influence of microstructure on the rolling contact fatigue of steel for high-speed-train wheel[J]. Wear, 2015, 342-343:349-355. doi:10.1016/j.wear.2015.10.002 [30] FANG Xiuyang, HUANG Wei, YANG Xufeng, et al. Effects of temperature on fatigue cracks initiation and propagation for a high-speed railway wheel rim steel[J]. Engineering Failure Analysis, 2020, 109:104376. doi:10.1016/j.engfailanal.2020.104376 [31] PENG D, JONES R, CONSTABLE T, et al. The tool for assessing the damage tolerance of railway wheel under service conditions[J]. Theoretical and Applied Fracture Mechanics, 2012, 57:1-13. doi:10.1016/j.tafmec.2011.12.002 [32] HANDA K, KIMURA Y, MISHIMA Y. Surface cracks initiation on carbon steel railway wheels under concurrent load of continuous rolling contact and cyclic frictional heat[J]. Wear, 2010, 268(1-2):50-58. doi:10.1016/j.wear. 2009.06.029 [33] VILLAS BAS R L, CUNHA A P A, FONSECA S T, et al. Eefeitos da adição de nióbio e molibdênio em aço 0.7% para fabricação de rodas ferroviárias[C]. Paraíba, Brasil:VI National Congress of Mechanical Engineering, 2010. [34] DING H H, FU Z K, WANG W J, et al. Investigation on the effect of rotational speed on rolling wear and damage behaviors of wheel/rail materials[J]. Wear, 2015, 330-331:563-570. doi:10.1016/j.wear.2014.12.043 [35] 李自彬, 郭俊, 王文健, 等. 车轮转速对列车车轮磨损性能的影响[J]. 机械工程材料, 2010, 34(6):24-27. LI Zibin, GUO Jun, WANG Wenjian, et al. Effect of wheel speed on wear properties of train wheel[J]. Materials for Mechanical Engineering, 2010, 34(6):24-27. [36] 应忠良. 变轴重工况下轮轨磨损性能研究[D]. 成都:西南交通大学, 2015. YING Zhongliang. Research on wheel-rail wear performance under variable axle load[D]. Chengdu:Southwest Jiaotong University, 2015. [37] 黄洁, 周琰, 彭金方, 等. 高转速、不同法向载荷条件下车轮与钢轨间的滚动摩擦磨损及损伤行为[J]. 机械工程材料, 2016, 40(6):88-92. doi:10.11973/jxgccl201606019 HUANG Jie, ZHOU Yan, PENG Jinfang, et al. Rolling friction and wear, and damage behavior of wheel/rail at high rotation speed and different normal loads[J]. Materials for Mechanical Engineering, 2016, 40(6):88-92. doi:10.11973/jxgccl201606019 [38] 王文健, 郭俊, 刘启跃. 车轮钢的滚动剥离损伤[J]. 机械工程材料, 2010, 34(8):9-11. WANG Wenjian, GUO Jun, LIU Qiyue. Rolling spalling damage of wheel steel[J]. Materials for Mechanical Engineering, 2010, 34(8):9-11. [39] ZHU Yi, LÜ Yezhe, OLOFSSON U, et al. Mapping the friction between railway wheels and rails focusing on environmental conditions[J]. Wear, 2015, 324-325:122-128. doi:10.1016/j.wear.2014.12.028 [40] ZHOU Guiyuan, HE Chenggang, WEN Guang, et al. Fatigue damage mechanism of railway wheels under lateral forces[J]. Tribology International, 2015, 91:160-169. doi:10.1016/j.triboint.2015.07.008 [41] ZHU Y, CHEN X, WANG W J, et al. A study on iron oxides and surface roughness in dry and wet wheel-rail contacts[J]. Wear, 2015, 328-329:241-248. doi:10.1016/j.wear.2015.02.025 [42] HE C G, HUANG Y B, MA L, et al. Experimental investigation on the effect of tangential force on wear and rolling contact fatigue behaviors of wheel material[J]. Tribology International, 2015, 92:307-316. doi:10.1016/j.triboint.2015.07.012 [43] LEWIS R, DWYER-JOYCE R S. Wear mechanisms and transitions in railway wheel steels[J]. Journal of Engineering Tribology, 2004, 218(6):467-478. doi:10.1243/1350650042794815 [44] 丁昊昊, 王文健, 郭俊, 等. 轴重对轮轨材料滚动磨损与损伤行为影响[J]. 材料工程, 2015, 43(10):35-41. doi:10.11868/j.issn.1001-4381.2015.10.006 DING Haohao, WANG Wenjian, GUO Jun, et al. Effect of axle-load on rolling wear and damage behaviors of wheel and rail materials[J]. Journal of Materials Engineering, 2015, 43(10):35-41. doi:10.11868/j.issn.10014381.2015.10.006 [45] 陈大中, 杨克, 郑方翎. 钢轨表面损伤及抗磨方法的研究[C]. 北京:全国第二届表面工程学术研讨会, 1991. CHEN Dazhong, YANG Ke, ZHENG Fangjun. Study on rail surface damage and anti-wear method[C]. Beijing:The 2nd National Symposium on Surface Engineering, 1991. [46] 王文健, 刘启跃, 周仲荣. 车轮钢滚动剥离摩擦磨损特性研究[J]. 摩擦学学报, 2005, 25(5):475-479. doi:10.3321/j.issn:1004-0595.2005.05.020 WANG Wenjian, LIU Qiyue, ZHOU Zhongrong. Study on friction and wear properties of wheel steel under rollingsliding condition[J]. Tribology, 2005, 25(5):475-479. doi:10.3321/j.issn:1004-0595.2005.05.020 [47] PARKER R C, MARSHALL P R. The measurement of the temperature of sliding surfaces with particular reference to railway brake blocks[J]. Proceedings of the Institution of Mechanical Engineers, 1948, 158:209-229. doi:10.1243/PIME_PROC_1948_158_026_02 [48] VERNERSSON T. Thermally induced roughness of treadbraked railway wheels Part 1:Brake rig experiments[J]. Wear, 1999, 236(1-2):96-105. doi:10.1016/S0043-1648(99)00260-4 [49] ZHANG M R, GU H C. Fracture toughness of nanostructured railway wheels[J]. Engineering Fracture Mechanics, 2008, 75:5113-5121. doi:10.1016/j.engfracmech.2008.07.007 [50] BERNASCONI A, FILIPPINI M, FOLETTI S, et al. Multiaxial fatigue of a railway wheel steel under nonproportional loading[J]. International Journal of Fatigue, 2006, 28(5-6):663-672. doi:10.1016/j.ijfatigue.2005.07.045 [51] LIU Y M, STRATMAN B, MAHADEVAN S. Fatigue crack initiation life prediction of railroad wheels[J]. International Journal of Fatigue, 2006, 28(7):747-756. doi:10.1016/j.ijfatigue.2005.09.007 [52] BRUNEL J F, CHARKALUK E, DUFRÉNOY P, et al. Rolling contact fatigue of railways wheels:Influence of steel grade and sliding conditions[J]. Procedia Engineering, 2010, 2(1):2161-2169. doi:10.1016/j.proeng.2010.03.232 [53] TONG J, ZHAO L G, LIN B. Ratchetting strain as a driving force for fatigue crack growth[J]. International Journal of Fatigue, 2013, 46:49-57. doi:10.1016/j.ijfatigue.2012.01.003 [54] FRANKLIN F J, CHUNG T, KAPOOR A. Ratcheting and fatigue-led wear in rail-wheel contact[J]. Fatigue and Fracture of Engineering Materials and Structures, 2003, 26(10):949-955. doi:10.1046/j.1460-2695.2003.00703.x [55] TARAF M, ZAHAF E H, OUSSOUADDI O, et al. Numerical analysis for predicting the rolling contact fatigue crack initiation in a railway wheel steel[J]. Tribology International, 2010, 43(3):585-593. doi:10.1016/j.triboint.2009.09.007 [56] BEVAN A, MOLYNEUX-BERRY P, EICKHOFF B, et al. Development and validation of a wheel wear and rolling contact fatigue damage model[J]. Wear, 2013, 307(1-2):100-111. doi:10.1016/j.wear.2013.08.004 [57] HANDA K, MORIMOTO F. Influence of wheel/rail tangential traction force on thermal cracking of railway wheels[J]. Wear, 2012, 289:112-118. doi:10.1016/j.wear.2012.04.008 [58] MAKINO T, KATO T, HIRAKAWA K. The effect of slip ratio on the rolling contact fatigue property of railway wheel steel[J]. International Journal of Fatigue, 2012, 36(1):68-79. doi:10.1016/j.ijfatigue.2011.08.014 [59] VASIC G, FRANKLIN F J, FLETCHER D I. Influence of partial slip and direction of traction on wear rate in wheelrail contact[J]. Wear, 2011, 270(3-4):163-171. doi:10.1016/j.wear.2011.04.009 [60] WANG W J, LIU T F, WANG H Y, et al. Influence of friction modifiers on improving adhesion and surface damage of wheel/rail under low adhesion conditions[J]. Tribology International, 2014, 75:16-23. doi:10.1016/j.triboint.2014.03.008 [61] ZHOU G Y, LIU J H, WANG W J, et al. Study on the fatigue and wear characteristics of four wheel materials[J]. Journal of Modern Transportation, 2013, 21(3):182-193. doi:10.1007/s40534-013-0021-z [62] EKBERG A, KABO E. Fatigue of railway wheels and rails under rolling contact and thermal loading-an overview[J]. Wear, 2005, 258(7):1288-1300. doi:10.1016/j.wear.2004.03.039 [63] BARTLEY G W. A practical view of wheel tread shelling[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [64] LIU H Y, WANG N, ZHEN H B. Thermal damage test research of speed increased freight cars' wheel tread[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [65] LUNDéN R. Contact region fatigue of railway wheels under combined mechanical rolling pressure and thermal brake loading[J]. Wear, 1991, 144(1):57-70. doi:10.1016/0142-1123(92)90195-I [66] OPINSKY A J. Understanding rim thermal failures in freight car wheels[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [67] OSUCH K, STONE D H, ORRINGER O. European and American wheels and their resistance to thermal damage[C]. Paris, France:The 11th International Wheelset Congress, 1995. [68] SOARES H, ANES V, FREITAS M, et al. Fatigue life of a railway wheel under uniaxial and multiaxial loadings[J]. Procedia Structural Integrity, 2018, 13:1786-1791. doi:10.1016/j.prostr.2018.12.362 [69] AHLSTRÖM J, KARLSSON B. Microstructural evaluation and interpretation of the mechanically and thermally affected zone under railway wheel flats[J]. Wear, 1999, 232(1):1-14. doi:10.1016/s0043-1648(99)00166-0 [70] JERGEUS J. Railway wheel flats-martensite formation, residual stresses, and crack propagation[D]. Göteborg, Sweden:Department of Solid Mechanics, Chalmers University of Technology, 1998. [71] MAGEL E, KALOUSEK J. Identifying and interpreting railway wheel defects[C]. Montreal, Quebec:The International Heavy Haul Conference on Running Heavy, Running Fast into the 21st Century, 1996. [72] FEC M C, UTRATA D. Elevated temperature fatigue behaviour of class B, C and U wheels[C]. New York:Proceedings ASME Rail Transportation Spring Conference, 1985. [73] SAWLEY K J, ROSSER J A. Tread damage in discbraked wheels[C]. Montreal, Canada:The Ninth International Wheelset Congress, 1988. [74] JERGéUS J. Martensite formation and residual stress around railway wheel flats[J]. Journal of Rail and Rapid Transit, 1998, 212:69-79. [75] NAUMANN F K. Das Buch der Schadensfälle, Untersuchen-Beyrteilen-Vermeiden[M]. Stuttgart:Dr RiedererVerlag, 1976. [76] 周桂源, 何成刚, 刘吉华, 等. 冲角工况下列车车轮损伤机理研究[J]. 摩擦学学报, 2015, 35(6):768-773. doi:10.16078/j.tribology.2015.06.017 ZHOU Guiyuan, HE Chenggang, LIU Jihua, et al. Damage mechanism of railway wheels under condition with angle of attack[J]. Tribology, 2015, 35(6):768-773. doi:10.16078/j.tribology.2015.06.017 [77] EKBERG A, SOTKOVSZKI P. Anisotropy and fatigue of railway wheels[J]. International Journal of Fatigue, 2001, 23(1):29-43. doi:10.1016/S0142-1123(00)00070-0 [78] ZENG Dongfang, XU Tian, LIU Weidong, et al. Investigation on rolling contact fatigue of railway wheel steel with surface defect[J]. Wear, 2020, 446-447:203207. doi:10.1016/j.wear.2020.203207 [79] GHONEM H, KALOUSEK J. Study of surface crack initiation due to biaxial compression/shear loading[J]. Engineering Fracture Mechanics, 1988, 30(5):667-683. doi:10.1016/0013-7944(88)90158-0 [80] 张关震, 任瑞铭, 丛韬, 等. 时速250 km等级动车组自主化车轮的耐磨性能试验研究[J]. 中国铁道科学, 2017, 38(1):117-122. doi:10.3969/j.issn.1001-4632.2017.01.16 ZHANG Guanzhen, REN Ruiming, CONG Tao, et al. Test study on wear resistance of domestic wheel for 250 km/h high speed EMU[J]. China Railway Science, 2017, 38(1):117-122. doi:10.3969/j.issn.1001-4632.2017.01.16 [81] 陈水友, 刘吉华, 郭俊, 等. 车轮材料特性对轮轨磨损与疲劳性能影响的研究[J]. 摩擦学学报, 2015, 35(5):531-537. doi:10.16078/j.tribology.2015.05.003 CHEN Shuiyou, LIU Jihua, GUO Jun, et al. Effect of wheel material characteristics on wear and fatigue property of wheel-rail[J]. Tribology, 2015, 35(5):531-537. doi:10.16078/j.tribology.2015.05.003 [82] CANTINI S, CERVELLO S. The competitive role of wear and RCF:Full scale experimental assessment of artificial and natural defects in railway wheel treads[J]. Wear, 2016, 366-367:325-337 doi:10.1016/j.wear.2016.06.020 [83] FARHANGDOOST K, KAVOOSI M. Effect of lubricant on surface rolling contact fatigue cracks[J]. Advanced Materials Research, 2010, 97-101:793-796. doi:10.4028/www.scientific.net/AMR.97-101.793 [84] MAZZÙ A, PETROGALLI C, FACCOLI M. An integrated model for competitive damage mechanisms assessment in railway wheel steels[J]. Wear, 2015, 322-323:181191. doi:10.1016/j.wear.2014.11.013 [85] BOGDAŃSKI S, LEWICKI P. 3D model of liquid entrapment mechanism for rolling contact fatigue cracks in rails[J]. Wear, 2008, 265(9-10):1356-1362. doi:10.1016/j.wear.2008.03.014 [86] BOWER F A. The influence of crack face friction and trapped fluid on surface initiated rolling contact fatigue cracks[J]. Journal of Tribology, 1988, 110:704-711. doi:10.1115/1.3261717 [87] ZUCARELLI T A, VIEIRA M A, MOREIRA FILHO L A, et al. Failure analysis in railway wheels[J]. Procedia Structural Integrity, 2016, 1:212-217. doi:10.1016/j.prostr.2016.02.029 [88] 方修洋, 黄伟, 王俊国. 温度对动车组车轮钢服役次生疲劳裂纹起裂扩展特性影响[J]. 中国机械工程, 2020, 31(3):261-266. doi:10.3969/j.issn.1004-132X.2020.03.002 FANG Xiuyang, HUANG Wei, WANG Junguo. Effects of temperature on secondary fatigue crack initiation and growth behavior of high-speed railway wheel steels[J]. China Mechanical Engineering, 2020, 31(3):261-266. doi:10.3969/j.issn.1004-132X.2020.03.002 [89] FLETCHER D I, HYDE P, KAPOOR A. Modelling and full-scale trials to investigate fluid pressurization of rolling contact fatigue cracks[J]. Wear, 2008, 265(9):1317-1324. doi:10.1016/j.wear.2008.02.025 [90] EKBERG A, MARAIS J. Effects of imperfections on fatigue initiation in railway wheels[J]. Journal of Rail and Rapid Transit, 1999, 214(1):45-54. doi:10.1243/0954409001531234 [91] MARAIS J. Wheel failures on heavy haul freight wheels due to subsurface effects[C]. Qingdao:The 12th International Wheelset Congress, 1998. [92] BERETTA S, DONZELLA G, ROBERTI R, et al. Deep shelling in railway wheels[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [93] MUTTON P J, EPP C J, DUDEK J. Rolling contact fatigue in railway wheels under high axle loads[J]. Wear, 1991, 144(1-2):139-152. doi:10.1016/0043-1648(91)90011-I [94] STONE D, LONSDALE C, KALAY S. Effect of wheel impact loading on shattered rims[C]. Rome, Italy:The 13th International Wheelset Congress, 2001. [95] GIMÉNEZ J G, SOBEJANO H. Theoretical approach to the crack growth and fracture of wheels[C]. Paris:the 11th International Wheelset Congress, 1995. [96] KABO E, EKBERG A. Fatigue initiation in railway wheels:A numerical study of the influence of defects[J]. Wear, 2002, 253(1-2):26-34. [97] KABO E. Material defects in rolling contact fatigue:Influence of overloads and defect clusters[J]. International Journal of Fatigue, 2002, 24:887-894. doi:10.1016/s0142-1123(01)00193-1 [98] KHAN M R, DASAKA S M. Wheel-rail interactions in high speed railway networks during rapid train transit[J]. Materials Today:Proceedings, 2018, 5(11):25450-25457. doi:10.1016/j.matpr.2018.10.350 [99] 丛韬, 张斌, 付秀琴, 等. 重载和高速列车车轮轮辋疲劳裂纹萌生机理研究[C]. 黄山:2013年铁路和建筑用钢学术研讨会, 2013. CONG Tao, ZHANG Bin, FU Xiuqin, et al. Study on fatigue crack initiation mechanism of wheel rims in heavyduty and high-speed trains[C]. Huangshan:2013 Academic Conference on Railway and Construction Steel, 2013. [100] SOARES H, ZUCARELLI T, VIEIRA M, et al. Experimental characterization of the mechanical properties of railway wheels manufactured using class B material[J]. Procedia Structural Integrity, 2016, 1:265-272. doi:10.1016/j.prostr.2016.02.036 [101] ALFREDSSON B. A study on contact fatigue mechanisms[D]. Sweden:Royal Institute of Technology, 2000. [102] OLSSON M. Contact fatigue and tensile stresses[M]. Netherlands:Engineering Against Fatigue, 1999. [103] 赵相吉, 师陆冰, 王文健, 等. 硌伤形貌对车轮材料滚动接触疲劳特性的影响[J]. 中国机械工程, 2019, 30(3):278-283. doi:10.3969/j.issn.1004-132X.2019.03.005 ZHAO Xiangji, SHI Lubing, WANG Wenjian, et al. Effects of defect morphologies on rolling contact fatigue characteristics of wheel materials[J]. China Mechanical Engineering, 2019, 30(3):278-283. doi:10.3969/j.issn.1004-132X.2019.03.005 |
[1] | CUI Renhao, ZHANG Jianping, HE Yuanhua, YANG Bang. Multiaxial Fatigue Failure of 2A12-T4 Aluminum Alloy at High Temperature [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 33-41. |
[2] | XU Taolong, HE Gongzhen, ZHANG Yi, FENG Wei, WANG Wei. Effect of Hydrogen Atom Permeation on Microcrack Propagation of Pipeline Steel [J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2021, 43(6): 54-61. |
[3] | ZHANG Zhi, DING Jian, ZHAO Yuanjin, DENG Hu, LU Qi. Calculation Method of Critical Control Value of Sustained Annular Pressure in Shale Gas Well [J]. 西南石油大学学报(自然科学版), 2019, 41(6): 155-164. |
[4] | GONG Diguang, CHEN Junbin, QU Zhanqing, GUO Tiankui. Effect of Radial Well Guidance on Hydraulic Fracturing Crack Propagation Mechanism [J]. 西南石油大学学报(自然科学版), 2018, 40(5): 122-130. |
[5] | LIU Qingyou, HE Junjiang, MAO Liangjie. Safety Analysis of Flange Joint Collapse in Deep Water Drilling Risers [J]. 西南石油大学学报(自然科学版), 2018, 40(5): 163-169. |
[6] | TONG Hua, CHEN Guoyin, ZHU Xiaohua. Study on Rubber Bushing Failure of PDM having Uniform Wall Thickness [J]. 西南石油大学学报(自然科学版), 2017, 39(6): 154-161. |
[7] | LIAN Zhanghua1*, YU Hao1, LIU Yonghui2, LIN Tiejun1, ZHANG Qiang1. A Study on the Casing Wear Mechanism in Highly-deviated Well Drilling [J]. 西南石油大学学报(自然科学版), 2016, 38(2): 176-182. |
[8] | Jiang Feng*, Zheng Yunhu, Liang Rui, Du Chaofei. An Analysis of the Wet Modal Vibration of Marine Riser [J]. 西南石油大学学报(自然科学版), 2015, 37(5): 159-166. |
[9] | Ai Zhijiu;Li Jie;Liu Huixin;Peng Xu;Hu Kun. The Analysis of Fatigue Life About Erosion Resistance DeviceBased on Workbench [J]. 西南石油大学学报(自然科学版), 2013, 35(2): 174-178. |
[10] | JIAO Zhong-liang;SHUAI Jian. Integrity Assessment of Pipeline with Dents [J]. 西南石油大学学报(自然科学版), 2011, 33(4): 157-164. |
[11] | SONG Jian-tong LV Jiang-yi ZHU Chun-hong. [J]. 西南石油大学学报(自然科学版), 2010, 32(4): 160-162. |
[12] | YANG Mei LIU Qing-cai GAO Ying XUE Qi HUANG Ben-sheng . MICROSTRUCTURE AND PROPERTIES OF HARDFACING COATING ON TOOTH CONE BIT BY USING YQ4 [J]. 西南石油大学学报(自然科学版), 2010, 32(2): 169-172. |
[13] | HUANG Ben-sheng;FAN Zhou;TANG An-jun;YANG Mei;LIU Qing-you. EXPERIMENTAL STUDY ON COMPOSITE REPAIR WELDING ON STRENGTHENING THE SURFACE OF STEEL TOOTH ROLLER CONE BIT [J]. 西南石油大学学报(自然科学版), 2010, 32 (1): 141-144. |
[14] | HUANG Zhi-qiang TU Xiao-fang WANG Xiao-feng DI Fu-chun PENG Shi-jin . THE HIGH-SPEED ROLLER BIT BEARING SURFACE STRENGTHENING TECHNOLOGY [J]. 西南石油大学学报(自然科学版), 2009, 31(2): 143-145. |
[15] | YANG Qi-ming RAO Ji-yang.. THE WEARING EXPERIMENT OF THE EQUAL AND CHANGING DIAMETER FLOATINGRING SLIDING BEARING [J]. 西南石油大学学报(自然科学版), 2007, 29(3): 130-132. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||