[1] 侯启军,何海清,李建忠,等.中国石油天然气股份有限公司近期油气勘探进展及前景展望[J].中国石油勘探,2018,23(1):1-13. doi:10.3969/j.issn.1672-7703.2018.01.001 HOU Qijun, HE Haiqing, LI Jianzhong, et al. Recent progress and prospect of oil and gas exploration by Petro-China Company Limited[J]. China Petroleum Exploration, 2018, 23(1):1-13. doi:10.3969/j.issn.1672-7703.2018.01.001 [2] 李茂,朱绍鹏,邹明生,等.涠西南凹陷复杂断块和隐蔽油气藏滚动勘探开发实践[J].中国海上油气,2015,27(4):73-79. doi:10.11935/j.issn.1673-1506.2015.04.010 LI Mao, ZHU Shaopeng, ZOU Mingsheng, et al. Progressive exploration and development of complex faultblock and sbutle reservoirs in Weixinan Sag[J]. China Offshore Oil and Gas, 2015, 27(4):73-79. doi:10.11935/j.issn.1673-1506.2015.04.010 [3] SINGH B, DOLAN R, MASON B. Underground well kick detector:US006371204B1[P]. 2002-04-16.[2021-03-12]. [4] 梅大成,郑巧,何志敏,等.油气井钻井过程中井喷预测机理研究[J].天然气工业,2010,30(1):68-70. doi:10.3787/j.issn.1000-0976.2010.01.019 MEI Dacheng, ZHENG Qiao, HE Zhimin, et al. A study of blowout prediction mechanism during drilling in oil and gas wells[J]. Natural Gas Industry, 2010, 30(1):68-70. doi:10.3787/j.issn.1000-0976.2010.01.019 [5] 葛亮,黄凯强,田贵云,等.基于电磁检测机理的井下环空流量测量方法研究[J].仪器仪表学报,2019,40(12):161-174. doi:10.19650/j.cnki.cjsi.J1905700 GE Liang, HUANG Kaiqiang, TIAN Guiyun, et al. Measurement method of annular flow in underground based on electromagnetic detection mechanism[J]. Chinese Journal of Scientific Instrument, 2019, 40(12):161-174. doi:10.19650/j.cnki.cjsi.J1905700 [6] JOHNSON A, LEUCHTENBERG C, PETRIE S, et al. Advancing deepwater kick detection[C]. SPE 167990-MS, 2014. doi:10.2118/167990-MS [7] DORIA M T, MOROOKA C K. Kick detection in floating drilling rigs[C]. SPE 39004-MS, 1997. doi:10.2118/39004-MS [8] ROHANI M R. Managed-pressure drilling; techniques and options for improving operational safety and efficiency[J]. Petroleum&Coal, 2012, 54(1):24-33. [9] 石磊,陈平,胡泽,等.井下流量测量装置在MPD系统中的应用研究[J].西南石油大学学报(自然科学版),2010,32(6):89-92. doi:10.3863/j.issn.1674-5086.2010.06.018 SHI Lei, CHEN Ping, HU Ze, et al. The application of bottom-hole flowmeter in the MPD system[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2010, 32(6):89-92. doi:10.3863/j.issn.1674-5086.2010.06.018 [10] GE Liang, HU Ze, CHEN Ping, et al. Research on overflow monitoring mechanism based on downhole microflow detection[J]. Mathematical Problems in Engineering, 2014(21):676290. doi:10.1155/2014/676290 [11] 戴永寿,岳炜杰,孙伟峰,等."三高"油气井早期溢流在线监测与预警系统[J].中国石油大学学报(自然科学版),2015,39(3):188-194. doi:10.3969/j.issn.1673-5005.2015.03.027 DAI Yongshou, YUE Weijie, SUN Weifeng, et al. Online monitoring and warning system for early kick foreboding on "three high" wells[J]. Journal of China University of Petroleum (Science&Technology Edition), 2015, 39(3):188-194. doi:10.3969/j.issn.1673-5005.2015.03.027 [12] 孙合辉,李邓玥,黄汉军,等.出口流量监测技术在溢流预警方面的应用研究[J].录井工程,2014,25(4):59-62. doi:10.3969/j.issn.1672-9803.2014.04.014 SUN Hehui, LI Dengyue, HUANG Hanjun, et al. The application of outlet flow monitoring technology in kick warning[J]. Journal of Logging Engineering, 2014, 25(4):59-62. doi:10.3969/j.issn.1672-9803.2014.04.014 [13] 张兴全,周英操,翟小强,等.精细控压钻井溢流检测及模拟研究[J].西南石油大学学报(自然科学版),2015,37(5):128-132. doi:10.11885/j.issn.1674-5086.2013.12.27.03 ZHANG Xingquan, ZHOU Yingcao, ZHAI Xiaoqiang, et al. Kick detection and simulation in accurate managed pressure drilling[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2015, 37(5):128-132. doi:10.11885/j.issn.1674-5086.2013.12.27.03 [14] HARGREAVES D, JARDINE S, JEFFRYES B. Early kick detection for deepwater drilling:New probabilistic methods applied in the field[C]. SPE 71369-MS, 2001. doi:10.2118/71369-MS [15] NYBO R, BJORKEVOLL K S, ROMMETVEIT R. Spotting a false alarm-Integrating experience and real-time analysis with artificial intelligence[C]. SPE 112212-MS, 2008. doi:10.2118/112212-MS [16] 张禾,李祁颖,张露之,等.基于模糊专家系统的钻井溢流智能预警技术[J].西南石油大学学报(自然科学版),2016,38(2):169-175. doi:10.11885/j.issn.1674-5086.2013.12.04.05 ZHANG He, LI Qiying, ZHANG Luzhi, et al. Early intelligent kick warning in well drilling based on fuzzy expert system[J]. Journal of Southwest Petroleum University (Science&Technology Edition), 2016, 38(2):169-175. doi:10.11885/j.issn.1674-5086.2013.12.04.05 [17] 郭振斌,冯雪龙,田地,等. EKM溢流预警智能系统及其应用[J].钻采工艺,2020,43(1):132-134. doi:10.3969/J.ISSN.1006-768X.2020.01.38 GUO Zhenbin, FENG Xuelong, TIAN Di, et al. EKM overflow warning intelligent system and its application[J]. Journal of Drilling and Production Technology, 2020, 43(1):132-134. doi:10.3969/J.ISSN.1006-768X.2020.01.38 [18] 吕红燕,冯倩.随机森林算法研究综述[J].河北省科学院学报,2019,36(3):37-41. LÜ Hongyan, FENG Qian. A review of random forests algorithm[J]. Journal of Hebei Academy of Sciences, 2019, 36(3):37-41. [19] 方匡南,吴见彬,朱建平,等.随机森林方法研究综述[J].统计与信息论坛,2011,26(3):32-38. doi:10.3969/j.issn.1007-3116.2011.03.006 FANG Kuangnan, WU Jianbin, ZHU Jianping, et al. A review of technologies on random forests[J]. Statistics and Information Forum, 2011, 26(3):32-38. doi:10.3969/j.issn.1007-3116.2011.03.006 [20] 田乃满,兰恒星,伍宇明,等.人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J].地球信息科学学报,2020,22(12):2304-2316. TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction[J]. Journal of Geo-information Science, 2020, 22(12):2304-2316. [21] 王鹏,龚盼,冯定,等.基于随机森林算法的井下原油含水率软测量方法[J].计量学报,2019, 40(5):835-841. doi:10.3969/j.issn.1000-1158.2019.05.16 WANG Peng, GONG Pan, FENG Ding, et al. Soft sensing method for water cut of crude oil based on random forest algorithm[J]. Journal of Measurement, 2019, 40(5):835-841. doi:10.3969/j.issn.1000-1158.2019.05.16 [22] WALSH E S, KREAKIE B J, CANTWELL M G, et al. A random forest approach to predict the spatial distribution of sediment pollution in an estuarine system[J]. PloS One, 2017, 12(7):e0179473. doi:10.1371/journal.pone.0179473 [23] LIANG Haibo, HAN Haochen, NI Pengbo, et al. Overflow warning and remote monitoring technology based on improved random forest[J]. Neural Computing and Applications, 2021, 33(9):4027-4040. doi:10.1007/s00521-020-05425-1 [24] 史肖燕,周英操,赵莉萍,等.基于随机森林的溢漏实时判断方法研究[J].钻采工艺,2020,43(1):9-12. doi:10.3969/J.ISSN.1006-768X.2020.01.03 SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al. Research on real-time spillage judgment method based on random forest[J]. Journal of Drilling and Production Technology, 2020, 43(1):9-12. doi:10.3969/J.ISSN.1006-768X.2020.01.03 [25] ROHMER J, IDIER D, PARIS F, et al. Casting light on forcing and breaching scenarios that lead to marine inundation:Combining numerical simulations with a random-forest classification approach[J]. Environmental Modelling&Software, 2018, 104:64-80. doi:10.1016/j.envsoft.2018.03.003 [26] 司孟菡.钻井溢流实时预警方法研究[D].成都:西南石油大学,2016. SI Menghan. Research on real-time warning method of drilling overflow[D]. Chengdu:Southwest Petroleum University, 2016. |