[1] 高振宇,张慧宇,高鹏. 2022年中国油气管道建设新进展[J]. 国际石油经济, 2023, 31(3): 16-23. doi: 10.3969/j.issn.1004-7298.2023.03.003 GAO Zhenyu, ZHANG Huiyu, GAO Peng. New progress in China's oil and gas pipeline construction in 2022[J]. International Petroleum Economics, 2023, 31(3): 16-23. doi: 10.3969/j.issn.1004-7298.2023.03.003 [2] 唐德志. 交流电流对埋地管道阴极保护系统的影响规律及作用机制研究[D]. 北京:北京科技大学, 2016. TANG Dezhi. Study of alternating current interference on cathodic protection system of buried pipeline[D]. Beijing: University of Science and Technology Beijing, 2016. [3] 方书博,冯智慧,张广洲,等. 特高压交直流并行输电线路混合电场分布[J]. 中国电力, 2020, 53(3): 84-90. doi: 10.11930/j.issn.1004-9649.201808019 FANG Shubo, FENG Zhihui, ZHANG Guangzhou, et al. Research on hybrid electric field distribution of UHV AC/DC parallel transmission lines[J]. Electric Power, 2020, 53(3): 84-90. doi: 10.11930/j.issn.1004-9649.201808019 [4] 焦建瑛,刘瑶,陈涛涛,等. 北京受地铁杂散电流干扰埋地燃气管道的现场检测与防护方案[J]. 腐蚀与防护, 2021, 42(1): 60-65, 78. doi: 10.11973/fsyfh-202101013 JIAO Jianying, LIU Yao, CHEN Taotao, et al. On-site detection and protection plan for buried gas pipelines interfered by subway of stray current in Beijing[J]. Corrosion and Protection, 2021, 42(1): 60-65, 78. doi: 10.11973/fsyf h-202101013 [5] 许振昌,都业强,杜艳霞,等. 高压直流接地极对埋地金属管道干扰的研究现状[J]. 腐蚀与防护, 2020, 41(3): 63-69. doi: 10.11973/fsyfh-202003012 XU Zhenchang, DU Yeqiang, DU Yanxia, et al. Research status of interference caused by HVDC grounding in buried metal pipeline[J]. Corrosion and Protection, 2020, 41(3): 63-69. doi: 10.11973/fsyfh-202003012 [6] SUN Jianguang, CAO Guofei, HAN Changchai, et al. Influence of HVDC transmission system ground electrod on west-east gas pipeline[J]. Corrosion and Protection, 2017, 38(8): 631-636. [7] 丁清苗,秦永祥,崔艳雨,等. 交流杂散电流对剥离涂层下X80钢腐蚀行为研究[J]. 钢铁研究学报, 2021, 33(6): 503-514. doi: 10.13228/j.boyuan.issn1001-0963. 20200161 DING Qingmiao, QIN Yongxiang, CUI Yanyu, et al. Effect of AC stray current on corrosion behavior of X80 steel under stripped coating[J]. Journal of Iron and Steel Research, 2021, 33(6): 503-514. doi: 10.13228/j.boyuan.issn 1001-0963.20200161 [8] 赵书华,李晓,王树立,等. 埋地管道直流杂散电流腐蚀及防护的研究进展[J]. 材料保护, 2020, 53(5): 123-128. ZHAO Shuhua, LI Xiao, WANG Shuli, et al. Research progress of corrosion and protection of DC stray current interference on buried pipelines[J]. Materials Protection, 2020, 53(5): 123-128. [9] 张良,何沫,张凌帆. 800 kV特高压直流入地电流对埋地钢管道的影响[J]. 天然气工业, 2019, 39(12): 134-138. doi: 10.3787/j.issn.1000-0976.2019.12.017 ZHANG Liang, HE Mo, ZHANG Lingfan. Influence of 800 kV UHVDC in earth on buried steel line pipes[J]. Natural Gas Industry, 2019, 39(12): 134-138. doi: 10.3787/j. issn.1000-0976.2019.12.017 [10] 周冰,赵玉飞,张盈盈,等. 在役海洋桩基平台牺牲阳极阴极保护数值模拟[J]. 装备环境工程, 2021, 18(1): 110-118. doi: 10.7643/issn.1672-9242.2021.01.017 ZHOU Bing, ZHAO Yufei, ZHANG Yingying, et al. Numerical simulation of sacrificial anode cathodic protection for offshore pile foundation platform in service[J]. Equipment Environmental Engineering, 2021, 18(1): 110-118. doi: 10.7643/issn.1672-9242.2021.01.017 [11] 李民 强,郑震 生,董亮,等. 海洋 平台 导管 架外 加电 流阴 极保 护设 计数 值模 拟[J]. 表面 技术, 2016, 45(7): 109-114. doi: 10.16490/j.cnki.issn.1001-3660.2016.07.019 LI Minqiang, ZHENG Zhensheng, DONG Liang, et al. Design problems in impressed current cathodic protection for offshore jackets based on numerical method[J]. Surface Technology, 2016, 45(7): 109-114. doi: 10.16490/j.cnki.i ssn.1001-3660.2016.07.019 [12] 李威力,王静. 计算机模拟技术在深海环境阴极保护中的应用[J]. 全面腐蚀控制, 2014, 28(10): 61-63. doi: 10.13726/j.cnki.11-2706/tq.2014.10.061.03 LI Weili, WANG Jing. The computer simulation technic in deep sea cathodic protection[J]. Total Corrosion Control, 2014, 28(10): 61-63. doi: 10.13726/j.cnki.11-2706/tq.2014.10.061.03 [13] 蔡彬彬,刘佰川. 地铁车辆段杂散电流泄漏分析及处理[J]. 江苏科技信息, 2019, 36(21): 42-45. doi: 10.3969/j.issn.1004-7530.2019.21.013 CAI Binbin, LIU Baichuan. Analysis and treatment of stray current leakage of vehicle section in metro depot[J]. Jiangsu Science & Technology Information, 2019, 36(21): 42-45. doi: 10.3969/j.issn.1004-7530.2019.21.013 [14] 王欢. 交流杂散电流对Q235钢氢渗透行为及力学性能的影响[D]. 西安:西安理工大学, 2019.WANG Huan. Effect of AC stray current on hydrogen permeation behavior and mechanical properties of Q235 steel[D]. Xi'an: Xi'an University of Technology, 2019. [15] 谭冰. 输油管道杂散电流腐蚀及防护研究[D]. 徐州:中国矿业大学, 2019. TAN Bing. Study on stray current corrosion and protection of oil pipeline[D]. Xuzhou: China University of Mining and Technology, 2019. [16] TANG D Z, DU Y X, LIANG Y, et al. Electrochemical studies of the galvanic coupling zinc/pipeline steel in the presence of an applied alternating current[J]. Materials and Corrosion, 2016, 67(5): 463-470. doi: 10.1002/maco.201508545 [17] TANG D Z, DU Y X, LU M X, et al. Effect of pH value on corrosion of carbon steel under an applied alternating current[J]. Materials and Corrosion, 2015, 66(12): 1467-1479. doi: 10.1002/maco.201508365 [18] ZHANG Shouxin, LI Zili, YANG Chao, et al. The AC corrosion mechanisms and models: A review[J]. Corrosion, 2020, 76(2): 188-201. doi: 10.5006/3362 [19] LU M X, TANG D Z, DU Y X, et al. Investigation on corrosion of zinc ribbon under alternating current[J]. British Corrosion Journal, 2015, 50(3): 256-263. doi: 10.1179/1743278215Y.0000000010 [20] WANG Liwei, CHENG Lianjun, LI Junru, et al. Combined effect of alternating current interference and cathodic protection on pitting corrosion and stress corrosion cracking behavior of X70 pipeline steel in near-neutral pH environment[J]. Materials, 2018, 11(4): 465. doi: 10.3390/ma11040465 [21] ALLAHAR K N, BIERWAGEN G P, GELLING V J. Understanding AC-DC-AC accelerated test results[J]. Corrosion Science, 2010, 52(4): 1106-1114. doi: 10.1016/j.corsci.2009.12.001 [22] 徐成. 交直流杂散电流与应力耦合作用下X70管线钢腐蚀及涂层剥离行为研究[D]. 北京:北京工业大学, 2018. XU Cheng. Study on corrosion behavior of X70 pipeline steel and coating delamination under stray AC and DC with stress[D]. Beijing: Beijing University of Technology, 2018. [23] 丁海涛,李龙江,姜铭赫,等. 直流和交流混流杂散电流对埋地燃气管道失效影响的实验室研究[J]. 贵州化工, 2010, 35(5): 9-12. doi: 10.3969/j.issn.1008-9411.2010.05.004 DING Haitao, LI Longjiang, JIANG Minghe, et al. Lab research of DC & AC stray current for the failure effect of the gas pipelines buried underground[J]. Guizhou Chemical Industry, 2010, 35(5): 9-12. doi: 10.3969/j.issn.1008-9411.2010.05.004 [24] GAO Chunjia, QI Bo, LI Chengrong. The interface charge characteristics of oil-pressboard composite insulation and its impact on surface flashover under combined AC/DC voltages[J]. International Journal of Electrical Power & Energy Systems, 2020, 115: 105484. doi: 10.1016/j.ijepe s.2019.105484 [25] WEN Chuang, LI Jingbo, WANG Shuli, et al. Experimental study on stray current corrosion of coated pipeline steel[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1555-1561. doi: 10.1016/j.jngse.2015.10.022 [26] GUO Yanbao, TAN Hai, MENG Tao, et al. Effects of alternating current interference on the cathodic protection for API 5L X60 pipeline steel[J]. Journal of Natural Gas Science and Engineering, 2016, 36: 414-423. doi: 10.1016/j.jngse.2016.10.021 [27] YIN Ke, YANG Yao, CHENG Y F. Permeability of coal tar enamel coating to cathodic protection current on pipelines[J]. Construction and Building Materials, 2018, 192: 20-27. doi: 10.1016/j.conbuildmat.2018.10.123 [28] WANG Jun, LI Zili, KONG Chuanping, et al. Effects of DC stray current on the polarization characteristics of X70 steel[J]. International Journal of Electrochemical Science, 2018, 13(12): 12099-12117. doi: 10.20964/2018.12.50 [29] KUANG D, CHENG Y F. Understand the AC induced pitting corrosion on pipelines in both high pH and neutral pH carbonate/bicarbonate solutions[J]. Corrosion Science, 2014, 85: 304-310. doi: 10.1016/j.corsci.2014.04.030 [30] 杨勇进,张玉成,高克玮,等. X65钢 CO2腐蚀产物膜电化学行为研究[J]. 科技导报, 2008, 26(5): 65-69. doi: 10.3321/j.issn:1000-7857.2008.05.013 YANG Yongjin, ZHANG Yucheng, GAO Kewei, et al. Investigation of the electrochemical behavior of CO2 corrosion product scale of X65 steel[J]. Science & Technology Review, 2008, 26(5): 65-69. doi: 10.3321/j.issn:1000-7857.2008.05.013 [31] 张秋利,王丹,王莎,等. pH值对X90管线钢在模拟 酸性 土壤 溶液 中腐 蚀行 为的 影响[J]. 材料 保护, 2018, 51(1): 18-21, 126. doi: 10.16577/j.cnki.42-1215/tb.2018.01.005 ZHANG Qiuli, WANG Dan, WANG Sha, et al. Effects of pH values on corrosion behavior of X90 pipeline steel in simulated soil solution[J]. Materials Protection, 2018, 51(1): 18-21, 126. doi: 10.16577/j.cnki.42-1215/tb.2018.01.005 [32] 赵博,杜翠薇,刘智勇,等. 剥离涂层下的X80钢在鹰潭土壤模拟溶液中的腐蚀行为[J]. 金属学报, 2012, 48(12): 15301536. ZHAO Bo, DU Cuiwei, LIU Zhiyong, et al. Corrosion behavior of X80 steel in Yingtan soil simulated solution under disbanded coating[J]. Acta Metallurgica Sinica, 2012, 48(12): 1530-1536. [33] 谢丝莉,杜艳霞,高荣钊,等. X70管线钢交流腐蚀的影响因素[J]. 腐蚀与防护, 2020, 41(2): 7-13. doi: 10.11973/fsyfh-202002002 XIE Sili, DU Yanxia, GAO Rongzhao, et al. AC corrosion influencing factors for X70 pipeline steel[J]. Corrosion & Protection, 2020, 41(2): 7-13. doi: 10.11973/fsyfh-202002002 |