[1] 张国生,赵文智,杨涛,等. 我国致密砂岩气资源潜力、 分布与未来发展地位[J]. 中国工程科学, 2012, 14(6):87-93. doi: 10.3969/j.issn.1009-1742.2012.06.012 ZHANG Guosheng, ZHAO Wenzhi, YANG Tao, et al. Resource evaluation, position and distribution of tight sandstone gas in China[J]. Chinese Engineering Science, 2012, 14(6): 87-93. doi: 10.3969/j.issn.1009-1742.2012.06.012 [2] 李明强,张立强,李政宏,等. 塔里木盆地下侏罗统阿合组下砂砾岩段致密砂岩成岩相划分及测井识别——以库车坳陷依奇克里克地区为例[J]. 天然气地球科学, 2021, 32(10):1559-1570. doi: 10.11764/j.issn.1672-1926.2021.03.001 LI Mingqiang, ZHANG Liqiang, LI Zhenghong, et al. Diagenetic facies division and logging identification of tight sandstone in the lower conglomerate member of Lower Jurassic Ahe Formation in Tarim Basin: Case study of Yiqikelike Area in Kuqa Depression[J]. Natural Gas Geoscience, 2021, 32(10): 1559-1570. doi: 10.11764/j.is sn.1672-1926.2021.03.001 [3] CUI Yufeng, WANG Guiwen, JONES S J, et al. Prediction of diagenetic facies using well logs: A case study from the upper Triassic Yanchang Formation, Ordos Basin, China[J]. Marine and Petroleum Geology, 2017, 81: 5065. doi: 10.1016/j.marpetgeo.2017.01.001 [4] LI Bin, ZHANG Hanbing, XIA Qingsong, et al. Quantitative evaluation of tight sandstone reservoir based on diagenetic facies: A case of Lower Silurian Kepingtage Formation in Shuntuoguole Low Uplift, Tarim Basin, China[J]. Frontiers in Earth Science, 2021, 8: 2020. doi: 10.3389/feart.2020.597535 [5] REN Dazhong, SUN Liang, LI Rongxi, et al. The impacts of diagenetic facies on reservoir quality in tight sandstones[J]. Open Geosciences, 2020, 12(1): 1060-1082. doi: 10.1515/geo-2020-0174 [6] 白云云,孙卫,任大忠,等. 鄂尔多斯盆地苏里格气田西区苏48区块盒8 段砂岩成岩相定量划分及特征差异[J]. 天然气地球科学, 2018, 29(12):1739-1747. doi: 10.11764/j.issn.1672-1926.2018.08.002 BAI Yunyun, SUN Wei, REN Dazhong, et al. Quantitative classification and characteristic difference of diagenetic facies in He 8 Reservoir of the Su 48 Block, west area of Sulige Gas Field, Ordos Basin[J]. Natural Gas Geoscience, 2018, 29(12): 1739-1747. doi: 10.11764/j.issn.1672-1926.2018.08.002 [7] 余瑜,林良彪,高健,等. Q型聚类分析在四川盆地南部上三叠统须二段成岩相研究中的应用[J]. 地质科技情报, 2017, 36(2):133-140. YU Yu, LIN Liangbiao, GAO Jian, et al. Application of Q type cluster analysis in the study of quantitative diagenetic facies of Member 2 of Xujiahe Formation in southern Sichuan[J]. Geological Science and Technology Information, 2017, 36(2): 133-140. [8] 白薷,王世玉,张璐,等. 基于 MAE神经网络的测井曲线地层自动识别方法[J]. 天然气勘探与开发, 2024, 47(4):63-71. doi: 10.12055/gaskk.issn.16733177.2024.04.007 BAI Ru, WANG Shiyu, ZHANG Lu, et al. An automatic identifying method for strata via logging curves based on MAE neural network[J]. Natural Gas Exploration and Development, 2024, 47(4): 63-71. doi: 10.12055/ gaskk.issn.1673-3177.2024.04.007 [9] 赵峦啸,刘金水,姚云霞,等. 基于随机森林算法的陆相沉积烃源岩定量地震刻画:以东海盆地长江坳陷为例[J]. 地球物理学报, 2021, 64(2):700-715. doi: 10.6038/cjg2021O0123. ZHAO Luanxiao, LIU Jinshui, YAO Yunxia, et al. Quantitative seismic characterization of source rocks in lacustrine depositional setting using the Random Forest method: An example from the Changjiang Sag in East China Sea Basin[J]. Chinese Journal of Geophysics, 2021, 64(2): 700-715. doi: 10.6038/cjg2021O0123. [10] QI Ming, HAN Changcheng, MA Cunfei, et al. Identification of diagenetic facies logging of tight oil reservoirs based on deep learning: A case study in the permian Lucaogou Formation of the Jimsar Sag, Junggar Basin[J]. Minerals, 2022, 12(7): 917. doi: 10.3390/min12070913 [11] SARKAR S, PRAMANIK A, MAITI J, et al. Predicting and analyzing injury severity: A machine learning-based approach using class-imbalanced proactive and reactive data[J]. Safety Science, 2020, 125(1): 104616. doi: 10.1016/j.ssci.2020.104616 [12] FERNANDEZ A, GARCIA S, HERRERA F, et al. SMOTE for learning from imbalanced data: Progress and challenges, marking the 15-year anniversary[J]. Journal of Artificial Intelligence Research, 2018, 61: 863-905. doi: 10.1613/jair.1.11192 [13] HE Haibo, BAI Yang, EDWARDO A G, et al. ADASYN: Adaptive synthetic sampling approach for imbalanced learning[C]. Hong Kong: Proceedings of the International Joint Conference on Neural Networks, 2008. doi: 10.1109/ijcnn.2008.4633969 [14] TAEJUN L, MINJU K, SUNG-PHIL K, et al. Data augmentation effects using Borderline-SMOTE on classification of a P300-based BCI[C]. Berlin: Proceedings of the 8th International Winter Conference on Brain-Computer Interface(BCI), 2020. doi: 10.1109/BCI48061.2020.9061656 [15] 赵清华,张艺豪,马建芬,等. 改进SMOTE的非平衡数据集分类算法研究[J]. 计算机工程与应用, 2018, 54(18):168-173. doi: 10.3778/j.issn.1002-8331.1705-0334 ZHAO Qinghua, ZHANG Yihao, MA Jianfen, et al. Research on classification algorithm of imbalanced datasets based on improved SMOTE[J]. Computer Engineering and Applications, 2018, 54(18): 168-173. doi: 10.3778/j.issn.1002-8331.1705-0334 [16] 梅大成,陈江,郑涛. 边界与密度适应的SMOTE算法研究[J]. 计算机应用研究, 2022, 39(5):1478-1482. doi: 10.19734/j.issn.1001-3695.2021.09.0410 MEI Dacheng, CHEN Jiang, ZHENG Tao. Research on SMOTE algorithm based on boundary and density adaptation[J]. Computer Application Research, 2022, 39(5):1478-1482. doi: 10.19734/j.issn.1001-3695.2021.09.0410 [17] LI Junnan, ZHU Qingsheng, WU Quanwang, et al. A novel oversampling technique for class-imbalanced learning based on SMOTE and natural neighbors[J]. Information Sciences, 2021, 565: 438-455. doi: 10.1016/j.ins.2021. 03.041 [18] XU Fanghao, XU Guosheng, LIU Yong, et al. Factors controlling the development of tight sandstone reservoirs in the Huagang Formation of the central inverted structural belt in Xihu Sag, East China Sea Basin[J]. Petroleum Exploration and Development, 2020, 47(1): 101-113. doi: 10.1016/S1876-3804(20)60009-X [19] 李顺利,李竞,陈彬滔,等. 西湖凹陷渐新统花港组大型沿岸砂坝沉积特征及主控因素[J]. 古地理学报, 2020, 22(3):493-503. doi: 10.7605/gdlxb.2020.03.034. LI Shunli, LI Jing, CHEN Bintao, et al. Sedimentary characteristics and controlling factors of large-scale longshore bar in the Oligocene Huagang Formation, Xihu Sag[J]. Chinese Journal of Palaeogeography, 2020, 22(3): 493-503. doi: 10.7605/gdlxb.2020.03.034. [20] DUAN Dongping, ZHANG Xianguo, LIU Binbin, et al. The relationship between chlorite and reservoir quality in the Huagang Formation, Xihu Depression, China[J]. Energies, 2022, 15(9): 1-16. doi: 10.3390/en15093438 [21] QIAN Wendao, YIN Taiju, ZHANG Changmin, et al. Diagenetic evolution of the oligocene Huagang Formation in Xihu Sag, the East China Sea Shelf Basin[J]. Scientific Reports, 2020, 10(1): 19402. doi: 10.1038/s41598020-76481-9 [22] VERBIEST N, RAMENTOL E, CORNELIS C, et al. Preprocessing noisy imbalanced datasets using SMOTE enhanced with fuzzy rough prototype selection[J]. Applied Soft Computing, 2014, 22: 511-517. doi: 10.1016/j.asoc.2014.05.023 [23] MOORTHY K, MOHAMAD M S. Random forest for gene selection and microarray data classification[J]. Biomedical Informatics, 2011, 7(3): 142-146. doi: 10.1007/978-3-642-32826-8_18 [24] SCHONLAU M, ZOU Yuyan. The random forest algorithm for statistical learning[J]. Stata Journal, 2020, 20(1): 3-29. doi: 10.1177/1536867X20909688 [25] 钟原,张泰,李平,等. 随机森林的融合模型在压井方法分类中的研究[J]. 西南石油大学学报(自然科学版), 2022, 44(1):165-173. doi: 10.11885/j.issn.16745086.2020.05.12.02. ZHONG Yuan, ZHANG Tai, LI Ping, et al. Research on classification of well killing method based on random forest fusion model[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2022, 44(1): 165-173. doi: 10.11885/j.issn.1674-5086.2020.05.12.02. [26] AUSKALNIS J, PAULAUSKAS N, BASKYS A. Application of local outlier factor algorithm to detect anomalies in computer network[J]. Telecommunications Engineering, 2018, 24(3): 96-99. doi: 10.5755/j01.eie.24.3.20972 [27] SU Shubin, XIAO Limin, LI Ruan, et al. An efficient density-based local outlier detection approach for scattered data[J]. IEEE Access, 2018, 7: 1006-1020. doi: 10.1109/ACCESS.2018.2886197 |