J4 ›› 2012, Vol. 11 ›› Issue (4): 25-27.

• 物理学 • 上一篇    下一篇

用Cauchy-Schwarz不等式推证坐标和动量的不确定度关系

介绍利用Cauchy-Schwarz不等式及厄米算符的性质推证坐标和动量的不确定度关系的方法,并对该不确定度关系进行分析讨论,得到当波函数为高斯函数时,坐标和动量的不确定度关系将取等式形式的结论。   

  1. 大理学院工程学院,云南大理 671003
  • 收稿日期:2011-09-15 出版日期:2012-04-15 发布日期:2012-04-15
  • 作者简介:谢勇,副教授,主要从事理论物理和生物医学工程学教学与研究.
  • 基金资助:

    中德科学基金项目(GZ585)

Derivation of Position and Momentum Uncertainty Relation with Cauchy-Schwarz Inequality

This paper introduces the derivation of position and momentum uncertainty relation from Cauchy-Schwarz inequality and the properties of Hermitian operator, and discusses this uncertainty relation. For a Gaussian wave function, the inequality of uncertainty relation will hold equality sign.   

  1. College of Engineering, Dali University, Dali, Yunnan 671003, China
  • Received:2011-09-15 Online:2012-04-15 Published:2012-04-15

摘要:

介绍利用Cauchy-Schwarz不等式及厄米算符的性质推证坐标和动量的不确定度关系的方法,并对该不确定度关系进行分析讨论,得到当波函数为高斯函数时,坐标和动量的不确定度关系将取等式形式的结论。

关键词: Cauchy-Schwarz不等式, 坐标, 动量, 不确定度关系, 厄米算符

Abstract:

This paper introduces the derivation of position and momentum uncertainty relation from Cauchy-Schwarz inequality and the properties of Hermitian operator, and discusses this uncertainty relation. For a Gaussian wave function, the inequality of uncertainty relation will hold equality sign.

Key words: Cauchy-Schwarz inequality, position, momentum, uncertainty relation, Hermitian operator

中图分类号: