J4 ›› 2015, Vol. 14 ›› Issue (6): 5-7.

• 数学与计算机科学 • 上一篇    下一篇

判定连续随机变量独立性的两个充要条件

  

  1. 1.内江师范学院数学与信息科学学院,四川内江641100;2.四川省高等学校数值仿真重点实验室,
    四川内江641100
  • 收稿日期:2014-06-23 出版日期:2015-06-15 发布日期:2015-06-15
  • 作者简介:王凡彬,教授,主要从事偏微分方程及应用研究.
  • 基金资助:

    教育部数学与应用数学专业综合改革试点项目(ZG0464);四川省高校数值仿真与数学实验教学示范中心项
    目(O1247)

Two Necessary and Sufficient Conditions for Determining the Independence of Continuous Random
Variables

  1. 1.College of Mathematics and Information Science, Neijiang Normal University, Neijiang, Sichuan 641100,China; 2.Key Laboratory
    of Numerical Simulation in the Sichuan Province College, Neijiang, Sichuan 641100, China
  • Received:2014-06-23 Online:2015-06-15 Published:2015-06-15

摘要:

对二维连续随机变量(X,Y) ,从联合密度函数和联合分布函数两个方面,得到了X,Y 独立的两个充要条件,然后给出了
应用,最后,把结果推广到了多维随机变量(X1,X2,?,Xn) 的情形,给出了判定X1,X2,?,Xn 独立性的两个充要条件。结果改进了
原来的方法,使得判定连续随机变量独立性变得简便易行。

关键词: 多维随机变量, 独立性, 充要条件

Abstract:

For two-dimensional continuous random variables(X,Y), two independent necessary and sufficient conditionsare obtained
based on the joint density function and the joint distribution function, and the application is also given. At last, the results are
generalized to(X1, X2, ..., Xn) case of multi- dimensional random variables, and two independence of necessary and sufficient
conditions for determining(X1, X2, ..., Xn)independence are given. The results improved the original way and made continuous random
variables independent judgment easier.

Key words: multi-dimensional random variables, independence, necessary and sufficient condition

中图分类号: