大理大学学报

• 数学与计算机科学 •    下一篇

总体最小二乘回归模型中回归参数的一种新估计算法

  

  1. 广州大学松田学院,广州511370
  • 收稿日期:2020-02-26 出版日期:2020-06-15 发布日期:2020-06-15
  • 作者简介:曹邦兴,讲师,主要从事应用数学、数理统计研究。

A New Estimation Method of Regression Parameter Applied to the Total Least Squares Regression Model

  1. (Sontan College, Guangzhou University, Guangzhou 511370, China)
  • Received:2020-02-26 Online:2020-06-15 Published:2020-06-15

摘要: 当系数矩阵和观测向量都包含误差时,基于总体最小二乘法的平差模型要优于普通最小二乘法。奇异值分解法和
Euler-Lagrange逼近算法是总体最小二乘法普遍采用的两种回归参数估计方法。但其推导过程要涉及Eckart-Young-Mirsky 矩
阵逼近理论等,复杂难懂,令许多学习者难以接受,也使其应用受到了限制。引入回归参数估计的一种新迭代算法,其理论依
据严谨充分,推导过程清晰易懂,具体计算也容易编程实现。通过实际算例来验证该方法的可行性与有效性,测试结果表明该
算法得出的线性回归模型具有良好的拟合效果。

关键词: 总体最小二乘法, 回归参数, 奇异值分解法, 迭代算法, 显著性检验

Abstract: The adjustment model based on total least squares is superior to the ordinary least squares when coefficient matrix and
observation vector include errors. Singular value decomposition method and Euler-Lagrange approximation algorithm are two
commonly used regression parameter estimation methods for total least squares, but its derivation process involves Eckart-Young-
Mirsky matrix approximation theory, which is complicated and difficult to understand, making many learners feel unacceptable, which
limits its application. Therefore, this paper introduces a new iterative algorithm for regression parameter estimation. The theoretical
basis is rigorous and sufficient, the derivation process is clear and easy to understand, and the specific calculation is also easy to
program. Practical examples are used to verify the feasibility and effectiveness of the method. The test results show that the linear
regression model obtained by the algorithm has a good fitting effect.

Key words: total least squares, regression parameters, singular value decomposition method, iterative algorithm, significance tests