大理大学学报 ›› 2022, Vol. 7 ›› Issue (6): 22-25.

• 数学与计算机科学 • 上一篇    下一篇

基于贴进度的模糊决策表属性约简启发式算法

  

  1. 云南财经大学统计与数学学院,昆明 650221
  • 收稿日期:2021-10-07 修回日期:2021-11-19 出版日期:2022-06-15 发布日期:2022-07-04
  • 作者简介:罗秋瑾,讲师,主要从事粗糙集理论与数据挖掘研究。
  • 基金资助:

    云南省教育厅科学研究基金项目(2019J0945);云南财经大学青年基金项目(2016B18

Heuristic Algorithm for Attribute Reduction of Fuzzy Decision Table Based on Similarity Degree

  1. School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming  650221, China
  • Received:2021-10-07 Revised:2021-11-19 Online:2022-06-15 Published:2022-07-04

摘要:

属性约简是模糊粗糙集主要的研究领域,是模糊粗糙集的第一个系统的应用。然而已经有学者证明要找到最小约简是NP-hard问题。提出一种新的约简算法,首先利用贴进度生成可辨识矩阵,再由可辨识矩阵求出相对核属性,基于核属性生成最小约简的启发式算法,最后用实例说明此方法的有效性。

关键词:

模糊粗糙集, 属性约简, 贴进度, 可辨识矩阵

Abstract:

Attribute reduction is the main research field of fuzzy rough sets also the first systematic application of that. However some scholars have proved that the problem of NP-hard is to find the minimum reduction. In this paper a new reduction algorithm is proposed in which the discernible matrix is first generated by the similarity degree and the relative core attributes are obtained by the discernible matrix then the heuristic algorithm based on the core attributes to generate the minimum reduction is presented. Finally an example is given to illustrate the effectiveness of the method.

Key words: fuzzy rough sets, attribute reduction, similarity degree, discernible matrix

中图分类号: