大理大学学报 ›› 2024, Vol. 9 ›› Issue (12): 30-35.

• 数学与计算机科学 • 上一篇    下一篇

基于关系矩阵的相对粒度增量式属性约简算法

  

  1. (滇西应用技术大学公共基础课教学部,云南大理 671006)
  • 收稿日期:2023-04-18 出版日期:2024-12-15 发布日期:2024-12-17
  • 作者简介:汪际和,副教授,主要从事粗糙集理论和机器学习研究。
  • 基金资助:
    滇西应用技术大学项目(21JK11;21XN04);云南省教育厅科学研究基金项目(2024J1131)

Relative Granularity Incremental Attribute Reduction Algorithm Based on Relational Matrix

  1. (Department of Public and Basic Course Teaching, West Yunnan University of Applied Sciences, Dali, Yunnan 671006, China)
  • Received:2023-04-18 Online:2024-12-15 Published:2024-12-17

摘要: 属性约简是粗糙集和粒计算理论中一项重要的数据处理方法。针对传统属性约简算法在处理动态数据问题上的不足,在相对粒度的基础上,利用关系矩阵研究了当决策信息系统的对象变化时,相对粒度的增量式变化机制。根据这种变化机制,提出了基于关系矩阵的相对粒度增量式属性约简算法,提高了属性约简效率。

关键词: 关系矩阵, 相对粒度, 属性约简

Abstract: Attribute reduction is an important data processing method in rough set and granular computing theory. In view of the
shortcomings of traditional attribute reduction algorithms in dealing with dynamic data problems and based on relative granularity, the
incremental change mechanism of relative granularity changes is studied using relational matrix when the objects of the decision
information system change. According to this change mechanism, a relative granularity incremental attribute reduction algorithm based on relational matrix is proposed to improve the efficiency of attribute reduction.

Key words:  , relational matrix, relative granularity, attribute reduction

中图分类号: