大理大学学报 ›› 2025, Vol. 10 ›› Issue (8): 36-40.DOI: 10. 3969 / j. issn. 2096-2266. 2025. 08. 005

• 药学 • 上一篇    下一篇

Zn/g-C3N4纳米材料光动力抗菌性能及其机制研究

符 袅,王 霞,刘玉娇,何洁丽*   

  1. (大理大学药学院,云南大理 671000)
  • 收稿日期:2025-05-13 修回日期:2025-05-19 出版日期:2025-08-15 发布日期:2025-09-06
  • 通讯作者: 何洁丽,教授,博士,E-mail:hejieli@dali.edu.cn。
  • 作者简介:符袅,硕士研究生,主要从事纳米材料的开发和应用研究。
  • 基金资助:
    国家自然科学基金项目(22162002);云南省科技厅基础研究专项项目(202501AT070426)

The Photodynamic Antibacterial Properties and Mechanism of Zn/g-C3N4 Nanomaterials

Fu Niao, Wang Xia, Liu Yujiao, He Jieli*   

  1. (College of Pharmacy, Dali University, Dali, Yunnan 671000, China)
  • Received:2025-05-13 Revised:2025-05-19 Online:2025-08-15 Published:2025-09-06

摘要: 目的:为构建高效的光动力抗菌体系,系统探究Zn/g-C3N4纳米材料的光动力抗菌性能及其机制。方法:采用煅烧法制
备Zn/g-C3N4纳米材料,以大肠埃希菌作为模型菌株,采用平板涂布法评估1%、5%、10%、15%和20% Zn/g-C3N4纳米材料对大
肠埃希菌的抑菌效率,并通过自由基淬灭实验和细胞成分泄漏分析,系统研究其光动力抗菌机制。结果:抑菌效果随Zn掺杂
比例增加先升高后降低,其中10% Zn/g-C3N4纳米材料在60 min内实现完全抑菌,表现出最佳抗菌性能。淬灭实验表明,羟基
自由基、超氧阴离子和单线态氧为主要活性氧物种。进一步研究显示,光动力作用诱导谷胱甘肽大量消耗,同时导致细菌胞内
核酸和蛋白质显著泄漏。结论:10% Zn/g-C3N4纳米材料在可见光照射下可高效产生活性氧物种,通过“活性氧物种攻击-抗氧
化防御崩溃-膜结构损伤-内容物泄漏”的级联反应机制实现高效杀菌。Zn/g-C3N4光动力抗菌体系的构建为新型光敏抗菌材
料的设计与应用提供了理论依据和实验参考。

关键词: Zn/g-C3N4, 光动力抗菌, 大肠埃希菌, 机制研究

Abstract: Objective: To construct an efficient photodynamic antibacterial system, this study systematically investigates the
photodynamic antibacterial properties and mechanism of Zn/g-C3N4 nanomaterials. Methods: Zn/g-C3N4 nanomaterials with Zn doping
ratios of 1%, 5%, 10%, 15%, and 20% were prepared by a calcination method. Escherichia coli (E. coli) was selected as the model
strain. The antibacterial efficacy against E. coli was assessed via the plate spreading method. The photodynamic antibacterial
mechanism was systematically studied through reactive oxygen species quenching assays and analysis of cellular component leakage.
Results: The antibacterial activity exhibited a trend of first increasing and then decreasing with the elevation of Zn doping ratio. The
10% Zn/g-C3N4 nanomaterial exhibited optimal antibacterial performance, achieving complete inhibition of E. coli within 60 minutes.
Quenching experiments identified hydroxyl radicals, superoxide anions, and singlet oxygen as the primary reactive oxygen species.
Further investigation revealed that photodynamic treatment led to substantial glutathione depletion and significant leakage of
intracellular nucleic acids and proteins in bacteria. Conclusion: Under visible light irradiation, 10% Zn/g-C3N4 nanomaterials
efficiently generate reactive oxygen species, which mediate a cascade antibacterial mechanism involving "reactive oxygen species
attack-antioxidant defense collapse-membrane structure damage-intracellular content leakage". This study provides theoretical basis
and experimental support for the design and application of novel photosensitizing antibacterial materials based on Zn/g-C3N4.

Key words: Zn/g-C3N4, photodynamic antibacterial properties, Escherichia coli, mechanism research

中图分类号: