〔1〕 BROWN J I,CAMERON B. On the Unimodality of Independence Polynomials of Very Well-Covered Graphs〔J〕. Discrete Mathematics,2018,341(4): 1138-1143.
〔2〕 LEVIT V E, MANDRESCU E. On Unimodality of Independence Polynomials of Some Well-Covered Trees〔C〕//International Conference on Discrete Mathematics and Theoretical Computer Science. 2003:237-256.
〔3〕 SONG L Z,STATON W,WEI B. Independence Polyno-mials of k-Tree Related Graphs〔J〕. Discrete Applied Mathematics,2010,158(8):943-950.
〔4〕 MERRIFIELD R H, SIMMONS H E. Topological Methods in Chemistry〔M〕. New York:Wiley, 1989.
〔5〕 XU K X. On the Hosoya Index and the Merrifield-Simmons Index of Graphs with a Given Clique Number〔J〕. Appied Mathematics Letters, 2010, 23: 395-398.
〔6〕 LEVIT V E, MANDRESCU E. Independence Polynomials of Well-Covered Graphs: Generic Counterexamples for the Unimodality Conjecture〔J〕. European Journal of Combina-torics,2006,27(6): 931-939.
〔7〕 CORNELIS H, LI X L. Clique Polynomials and Independent Set Polynomials of Graphs〔J〕. Discrete Mathematics, 1994, 125(1-3): 219-228.
〔8〕 WANG T M, YANG L M. Enumeration of Ideal Subgraphs〔M〕. Philadelphia: SIAM, 1991.
〔9〕 COMTET L. Advanced Combinatorics〔M〕. Spriger: D. Reidel Publishing Company, 1974.
〔10〕 BONDY J A, MURTY U S R. Graph Theory with Applications〔M〕. Oxford: The Macmil Press, 1976.
〔11〕 王天明. 近代组合学〔M〕. 大连: 大连理工大学出版社, 2008.
〔12〕 RICHARD P S. Enumerative Combinatorics〔M〕. Cambridge: Cambridge University Press, 1997.
〔13〕 KHEEMENG K, ENGGUAN T. Counting〔M〕 . Singapore: World Scientific, 2013.
〔14〕 YOSEF R, MIZRACHI M, KADRAWI O. On Unimo-dality of Indenpen-dence Polynomials of Trees〔J〕. Discrete Mathematics, 2021, arXiv:2101.06744v4.
|