〔1〕 DABLAIN M A. The Application of High-Order Differencing to Scalar Wave Equation〔J〕. Geophysics, 1986, 51(1): 54-66.
〔2〕 YANG D H, LIU E, ZHANG Z J, et al. Finite-Difference Modelling in Two-Dimensional Anisotropic Media Using a Flux-Corrected Transport Technique〔J〕. Geophysical Journal International, 2002, 148(2): 320-328.
〔3〕杨顶辉. 双相各向异性介质中弹性波方程的有限元解法及波场模拟〔J〕. 地球物理学报, 2002, 45(4): 575-583.
〔4〕 孙耿. 波动方程的一类显式辛格式〔J〕. 计算数学, 1997, 19(1): 1-10.
〔5〕 董良国,马在田,曹景忠,等. 一阶弹性波方程交错网格高阶差分解法〔J〕. 地球物理学报,2000,43(3):411-419.
〔6〕 YANG D H, TENG J W, ZHANG Z J, et al. A Nearly-Analytic Discrete Algorithm for Acoustic and Elastic Wave Equations in Anisotropic Media〔J〕. Bulletin of the Seis-mological Society of America, 2003, 93(2): 882-890.
〔7〕 CHEN S, YANG D H, DENG X Y. A Weighted Runge-Kutta Method with Weak Numerical Dispersion for Solving Wave Equations〔J〕. Communications in Computational Physics, 2010, 7(5): 1027-1048.
〔8〕 王磊, 杨顶辉, 邓小英. 非均匀介质中地震波应力场的WNAD方法及其数值模拟〔J〕. 地球物理学报, 2009, 52(6): 1526-1535.
〔9〕 YANG D H, SONG G J, CHEN S, et al. An Improved Nearly Analytical Discrete Algorithm: An Efficient Tool to Simulate the Seismic Response of 2-D Porous Struc-tures〔J〕. Journal of Geophysics and Engineering, 2007, 4(1): 40-52.
〔10〕 YANG D H, WANG N, CHEN S, et al. An Explicit Algorithm Based on the Implicit Runge-Kutta Algorithm for Solving the Wave Equations〔J〕. Bulletin of the Seis-mological Society of America, 2009,99(6): 3340-3354.
〔11〕 TONG P, YANG D H, HUA B L, et al. A High-Order Stereo-Modeling Method for Solving Wave Equations〔J〕. Bulletin of the Seismological Society of America, 2013, 103(2A): 811-833.
〔12〕 QIU J X, LI T G, KHOO B C. Simulations of Compressible Two-Medium Flow by Runge-Kutta Discontinuous Galerkin Methods with the Ghost Fluid Method〔J〕. Communications in Computational Physics, 2008, 3(3):479-504.
〔13〕 YANG D H, PENG J M, LU M, et al. Optimal Nearly-Analytic Discrete Approximation to the Scalar Wave Equation〔J〕. Bulletin of the Seismological Society of America , 2006, 96(3): 1114-1130.
|