Journal of Dali University ›› 2025, Vol. 10 ›› Issue (6): 11-17.
Previous Articles Next Articles
Online:
Published:
Abstract: Sub-prevalent co-location pattern is a subset of co-location patterns, and its mining is based on the star instances model. In the absence of feature utility values and instance utility values in instance sets, this study investigates how to calculate the utility value of star participating instances based on the star instances model, and proposes a method for calculating the feature star utility participation rate. In co-location pattern dominant feature mining, existing research rarely considers the influence of distance distribution between feature instances on dominant relationships. Therefore, this study explores how to use the distance distribution between star participating instances and neighbor instances as the dominant weight between features, and proposes a weighted method for calculating the feature star dominance rate. Finally, an algorithm for mining spatial high utility sub-prevalent co-location patterns with dominant features is proposed. The experimental results show that this algorithm can effectively distinguish the utility values and dominant features of patterns, and its effectiveness is significant.
Key words: co-location patterns, sub-prevalent co-location pattern, feature star utility participation rate, weighted feature dominance rate, utility value of star participating instances
CLC Number:
TP311
Zhao Qinyi, Zhao Yuqin, Hei Shaomin, Chen Jianhua. Mining of Spatial High Utility Sub-Prevalent Co-Location Patterns with Dominant Features[J]. Journal of Dali University, 2025, 10(6): 11-17.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/
http://journal15.magtechjournal.com/Jwk_dlxyzk/EN/Y2025/V10/I6/11
703.
〔6〕 邹目权,王丽珍,吴萍萍,等. 基于Voronoi图的空间Co- Location 核模式挖掘〔J〕. 计算机学报,2022,45(9): 1908-1925. 〔7〕 罗金,王丽珍,王晓璇,等. k-近邻关系下的空间高效用 核模式挖掘〔J〕. 计算机学报,2022,45(2):354-368. 〔8〕 方圆,王丽珍,王晓璇,等. 基于空间占有度的主导并置模 式挖掘〔J〕. 计算机研究与发展,2022,59(2):264-281. 〔9〕 李新源,陈红梅,肖清,等. 时空亚频繁co-location模式 挖掘〔J〕. 西南大学学报(自然科学版),2020,42(11): 68-76. 〔10〕 马董,陈红梅,王丽珍,等. 空间亚频繁co-location模式的 主导特征挖掘〔J〕. 计算机应用,2020,40(2):465-472. 〔11〕 马董,李新源,陈红梅,等. 星型高影响的空间co-location 模式挖掘〔J〕. 计算机科学,2022,49(1):166-174. 〔12〕 赵秦怡,黑邵敏. 基于指定特征的加权co-location模式 挖掘方法〔J〕. 大理大学学报,2023,8(12):15-21. 〔13〕 熊开放. 基于实例分布的co-location主导特征模式挖 掘研究〔D〕. 昆明:云南大学,2022. 〔14〕 曾新,张晓玲,李晓伟. 高平均效用co-location模式挖掘 的一种有效算法〔J〕. 大理大学学报,2022,7(6):9-17.
An Effective Algorithm for Mining High Average-Utility Co-Location Patterns
High Average-Utility Co-Location Patterns Mining Algorithm with Rare Features