西南石油大学学报(自然科学版) ›› 2018, Vol. 40 ›› Issue (6): 85-105.DOI: 10.11885/j.issn.1674-5086.2018.07.18.03
宋睿1,2, 汪尧1, 刘建军1,2
收稿日期:
2018-07-18
出版日期:
2018-12-01
发布日期:
2018-12-01
通讯作者:
刘建军,E-mail:jjliu@whrsm.ac.cn
作者简介:
宋睿,1987年生,男,汉族,河南唐河人,讲师,博士,主要从事微观渗流及数字岩芯建模方面的研究工作。E-mail:songrui0506@126.com;汪尧,1992年生,男,汉族,四川射洪人,博士研究生,主要从事微尺度模型重建与相似模型实验方面的研究工作。E-mail:542385778@qq.com;刘建军,1972年生,男,汉族,河南襄城人,教授,博士生导师,主要从事油气藏渗流理论及工程应用方面的研究。E-mail:jjliu@whrsm.ac.cn
基金资助:
SONG Rui1,2, WANG Yao1, LIU Jianjun1,2
Received:
2018-07-18
Online:
2018-12-01
Published:
2018-12-01
摘要: 孔隙结构特征的室内测试技术主要分为间接测试和直接测试两大类。前者主要以获取孔径分布等特征统计参数为主的流体注入法及孔隙流体饱和度的反分析法。后者主要为以获取孔隙结构图像为目的的光学辐射法。微观渗流物理实验可以实现孔隙空间中流体流动形态的可视化监测与分析,获取宏观条件下难以观测的实验现象,有助于孔隙尺度下渗流及驱替过程中复杂流动行为的微观力学机制分析。基于岩芯微观孔隙结构图像的模型重建是一种实现孔隙结构精细化表征与流体输运特性可视化研究的数值分析手段。基于不同的表征思想,多孔介质内流体输运控制方程可分为分子动力学模拟、格子玻尔兹曼模拟和计算流体动力学模拟。主要通过泊肃叶定律和准静态模型实现孔隙尺度流体流动和驱替过程的模拟。
中图分类号:
宋睿, 汪尧, 刘建军. 岩石孔隙结构表征与流体输运可视化研究进展[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 85-105.
SONG Rui, WANG Yao, LIU Jianjun. Microscopic Pore Structure Characterization and Fluids Transport Visualization of Reservoir Rock[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 85-105.
[1] LAI Jin, WANG Guiwen, WANG Ziyuan, et al. A review on pore structure characterization in tight sandstones[J]. Earth-Science Reviews, 2018, 177:436-457. doi:10.1016/j.earscirev.2017.12.003 [2] 宋艳波. 低渗气藏岩石变形渗流机理及应用研究[D]. 北京:中国地质大学, 2005. SONG Yanbo. A study of the percolation mechanisms with rock deformation and the application for low permeability gas reservoir[D]. Beijing:China University of Geoscience, 2005. [3] 司马立强,王超,王亮,等. 致密砂岩储层孔隙结构对渗流特征的影响——以四川盆地川西地区上侏罗统蓬莱镇组储层为例[J]. 天然气工业, 2016, 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003 SIMA Liqiang, WANG Chao, WANG Liang, et al. Effect of pore structure on the seepage characteristics of tight sandstone reservoirs:A case study of Upper Jurassic Penglaizhen Fm reservoirs in the western Sichuan Basin[J]. Natural Gas Industry, 2016, 36(12):18-25. doi:10.3787/j.issn.1000-0976.2016.12.003 [4] 熊金玉,李思田,唐玄,等. 湖相碳酸盐岩致密储层有机质赋存状态与孔隙演化微观机理[J]. 石油与天然气地质, 2015, 36(5):756-765. doi:10.11743/ogg20150506 XIONG Jinyu, LI Sitian, TANG Xuan, et al. Organic matter occurrence and microscopic mechanism of pore formation in the lacustrine tight carbonate reservoirs[J]. Oil & Gas Geology, 2015, 36(5):756-765. doi:10.11743/ogg20150506 [5] 朱洪林. 低渗砂岩储层孔隙结构表征及应用研究[D]. 成都:西南石油大学, 2014. ZHU Honglin. Pore structure characterization of low permeability sandstone reservoir and application[D]. Chengdu:Southwest Petroleum University, 2014. [6] 郝乐伟,王琪,唐俊. 储层岩石微观孔隙结构研究方法与理论综述[J]. 岩性油气藏, 2013, 25(5):123-128. doi:10.3969/j.issn.1673-8926.2013.05.023 HAO Lewei, WANG Qi, TANG Jun. Research progress of reservoir microscopic pore structure[J]. Lithologic Reservoirs, 2013, 25(5):123-128. doi:10.3969/j.issn.16738926.2013.05.023 [7] 杨正明,姜汉桥,李树铁,等. 低渗气藏微观孔隙结构特征参数研究——以苏里格和迪那低渗气藏为例[J]. 石油天然气学报,2007,29(6):108-119. doi:10.3969/j.issn.1000-9752.2007.06.026 YANG Zhengming, JIANG Hanqiao, LI Shutie, et al. Characteristic parameters of microscopic pore structures of low permeability gas reservoirs——By using sulige and dina low permeability gas reservoirs for example[J]. Journal of Oil and Gas Technology, 2007, 29(6):108-119. doi:10.3969/j.issn.1000-9752.2007.06.026 [8] ANOVITZ L M, COLE D R. Characterization and analysis of porosity and pore structures[J]. Reviews in Mineralogy & Geochemistry, 2015, 80(1):61-164. doi:10.2138/rmg.2015.80.04 [9] 于俊波,郭殿军,王新强. 基于恒速压汞技术的低渗透储层物性特征[J]. 大庆石油学院学报, 2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007 YU Junbo, GUO Dianjun, WANG Xinqiang. Study of microscopic behaviors of low permeable reservoir through constant velocity mercury injection technique[J]. Journal of Daqing Petroleum Institute, 2006, 30(2):22-25. doi:10.3969/j.issn.2095-4107.2006.02.007 [10] 杨峰,宁正福,孔德涛,等. 高压压汞法和氮气吸附法分析页岩孔隙结构[J]. 天然气地球科学, 2013, 24(3):450-455. YANG Feng, NING Zhengfu, KONG Detao, et al. Pore structure of shales from high pressure mercury injection and nitrogen adsorption method[J]. Natural Gas Geoscience, 2013, 24(3):450-455. [11] 崔景伟,邹才能,朱如凯,等. 页岩孔隙研究新进展[J]. 地球科学进展, 2012, 27(12):1319-1325. CUI Jingwei, ZOU Caineng, ZHU Rukai, et al. New advances in shale porosity research[J]. Advances in Earth Sciences, 2012, 27(12):1319-1325. [12] 刘凡,姜汉桥,张贤松,等. 基于核磁共振的水平井开发孔隙动用机理研究[J]. 西南石油大学学报(自然科学版), 2013, 35(6):99-103. doi:10.3863/j.issn.16745086.2013.06.013 LIU Fan, JIANG Hanqiao, ZHANG Xiansong, et al. Study on the mechanism of horizontal well development based on NMR[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(6):99-103. doi:10.3863/j.issn.1674-5086.2013.06.013 [13] 陈杰,刘向君,成竹,等. 利用电阻率测井资料研究砂岩孔隙结构特征[J]. 西南石油大学学报(自然科学版), 2005, 27(6):5-7. doi:10.3863/j.issn.1674-5086.2005.06.002 CHENG Jie, LIU Xiangjun, CHENG Zhu, et al. Studying the pore structure of sandstone by resistivity logging[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2005, 27(6):5-7. doi:10.3863/j.issn.1674-5086.2005.06.002 [14] 刘向君,周改英,陈杰,等. 基于岩石电阻率参数研究致密砂岩孔隙结构[J]. 天然气工业, 2007, 27(1):41-43. doi:10.3321/j.issn:1000-0976.2007.01.012 LIU Xiangjun, ZHOU Gaiying, CHEN Jie, et al. Study on pore structure of tight sand based on resistivity[J]. Natural Gas Industry, 2007, 27(1):41-43. doi:10.3321/j.issn:1000-0976.2007.01.012 [15] MCCREESH C A, EHRLICH R, CRABTREE S J, et al. Petrography and reservoir physics Ⅱ:Relating thin section porosity to capillary pressure, the association between pore types and throat size[J]. AAPG Bulletin, 1991, 75:1563-1578. doi:10.1016/0148-9062(92)93814-Z [16] 于丽芳,杨志军,周永章,等. 扫描电镜和环境扫描电镜在地学领域的应用综述[J]. 中山大学研究生学刊(自然科学、医学版), 2008, 29(1):54-61. YU Lifang, YANG Zhijun, ZHOU Yongzhang, et al. The application summary of scanning electron microscope (SEM) and environment scanning electron microscope (ESEM) in geoscience[J]. Journal of the Graduates Sun Yatsen University (Natural Science, Medicine), 2008, 29(1):54-61. [17] LEBEDEVA E, SENDEN T J, KNACKSTEDT M, et al. Improved oil recovery from tensleep sandstone-studies of brine-rock interactions by micro-ct and AFM[C]//IOR 2009-15th European Symposium on Improved Oil Recovery, 2009. doi:10.3997/2214-4609.201404879 [18] JAVADPOUR F. Nanopores and apparent permeability of gas flow in mud rocks (shales and siltstone)[J]. Journal of Canadian Petroleum Technology, 2009, 48(8):16-21. doi:10.2118/09-08-16-DA [19] 宋睿,刘建军,李光. 基于CT图像及孔隙网格的岩芯孔渗参数研究[J]. 西南石油大学学报(自然科学版), 2015, 37(3):138-145. doi:10.11885/j.issn.16745086.2015.04.03.03 SONG Rui, LIU Jianjun, LI Guang. Researches on the pore permeability of core sample based on 3D micro-CT images and pore-scale structured element models[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2015, 37(3):138-145. doi:10.11885/j.issn.16745086.2015.04.03.03 [20] 王冬欣. 基于Micro-CT图像的数字岩芯孔隙级网络建模研究[D]. 吉林:吉林大学, 2015. WANG Dongxin. The research of digital core network extraction based on micro-CT images[D]. Jilin:Jilin University, 2015. [21] WHITAKER S. Flow in porous media I:A theoretical derivation of Darcy's law[J]. Transport in Porous Media, 1986(1):3-25. doi:10.1007/BF01036523 [22] 黄延章,于大森. 微观渗流实验力学及其应用[M]. 北京:石油工业出版社, 2001. HUANG Yanzhang, YU Dasen. Experimental mechanics and its application of microscopic seepage[M]. Beijing:Petroleum Industry Press, 2011. [23] 秦积舜,李爱芬. 油层物理学[M]. 青岛:中国石油大学出版社, 2003. QIN Jishun, LI Aifen. Petrophysics[M]. Qingdao:China Petroleum University Press, 2003. [24] EDITION S. Recommended practices for core analysis[M]. Washington:API Publishing Services, 2010. [25] 熊钰,王帅,耿站立,等. 弱胶结高渗疏松砂岩人造岩芯制作新技术[J]. 地球物理学进展, 2015, 30(3):1474-1479. doi:10.6038/pg20150364 XIONG Yu, WANG Shuai, GENG Zhanli, et al. A new technology of making weakly cemented and hypertonic artificial cores of unconsolidated sandstone[J]. Progress in Geophysics, 2015, 30(3):1474-1479. doi:10.6038/pg20150364 [26] 姚军,孙海,李爱芬,等. 现代油气渗流力学体系及其发展趋势[J]. 中国科学:科学通报, 2018(6):425-451. doi:10.1360/N972017-00161 YAO Jun, SUN Hai, LI Aifen, et al. Modern system of multiphase flow in porous media and its development trend[J]. China Science Bulletin, 2018(6):425-451. doi:10.1360/N972017-00161 [27] 李爱芬,张东,姚军,等. 缝洞单元注水开发物理模拟[J]. 中国石油大学学报(自然科学版), 2012, 36(2):130-135. doi:10.3969/j.issn.1673-5005.2012.02.022 LI Aifen, ZHANG Dong, YAO Jun, et al. Physical simulation of water flooding in fractured-vuggy unit[J]. Journal of China University of Petroleum (Edition of Natural Science), 2012, 36(2):130-135. doi:10.3969/j.issn.16735005.2012.02.022 [28] 于明旭,朱维耀,宋洪庆. 低渗透储层可视化微观渗流模型研制[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(12):1646-1650. doi:10.3969/j.issn.1008-0562.2013.12.014 YU Mingxu, ZHU Weiyao, SONG Hongqing. Development of microscopic visualization flow model of lowpermeability reservoir[J]. Journal of Liaoning Technical University (Natural Science Edition), 2013, 32(12):1646-1650. doi:10.3969/j.issn.1008-0562.2013.12.014 [29] CHATENEVER A, CALHOUN Jr J C. Visual examinations of fluid behavior in porous media. Part I[J]. Journal of Petroleum Technology, 1952, 4(6):149-156. doi:10.2118/135-G [30] KELLER A A, BLUNT M J, ROBERTS A P V. Micromodel observation of the role of oil layers in three-phase flow[J]. Transport in Porous Media, 1997, 26(3):277-297. doi:10.1023/A:1006589611884 [31] 朱义吾,徐安新,吕旭明,等. 长庆油田延安组油层光刻显微孔隙模型水驱油研究[J]. 石油学报, 1989, 10(3):40-47. doi:10.7623/syxb198903005 ZHU Yiwu, XU Anxin, LÜ Xuming, et al. Oil water displacement experiments in glass micromodels for Yanan reservoir rocks, Changqing Oil Field[J]. Acta Petrolei Sinica, 1989, 10(3):40-47. doi:10.7623/syxb198903005 [32] 孔令荣,曲志浩,万发宝,等. 砂岩微观孔隙模型两相驱替实验[J]. 石油勘探与开发, 1991(4):79-85. KONG Lingrong, QU Zhihao, WAN Fabao, et al. Experiments of two fluid phase displacement in sandstone micromodels[J]. Petroleum Exploration and Development, 1991(4):79-85. [33] 鄢友军,陈俊宇,郭静姝,等. 龙岗地区储层微观鲕粒模型气水两相渗流可视化实验及分析[J]. 天然气工业,2012,32(1):64-66. doi:10.3787/j.issn.1000-0976.2012.01.013 YAN Youjun, CHEN Junyu, GUO Jingshu, et al. A visualized experiment on gas-water two-phase seepage through reservoirs in the longgang gas field, sichuan basin[J]. Natural Gas Industry, 2012, 32(1):64-66. doi:10.3787/j.issn.1000-0976.2012.01.013 [34] 高源. 稠油油藏聚合物驱微观波及实验及数值模拟研究[D]. 成都:西南石油大学, 2017. GAO Yuan. Experiment study and numerical simulation of microscopic sweep of polymer flooding in heavy oil reservoir[D]. Chengdu:Southwest Petroleum University, 2017. [35] OSEIBONSU K, GRASSIA P, SHOKRI N. Investigation of foam flow in a 3D printed porous medium in the presence of oil[J]. Journal of Colloid and Interface Science, 2017, 490:850-858. doi:10.1016/j.jcis.2016.12.015 [36] 程毅翀. 基于低场核磁共振成像技术的岩芯内流体分布可视化研究[D]. 上海:上海大学, 2014. CHENG Yichong. Visualization study on fluid distribution in core based on low-field MRI method[D]. Shanghai:Shanghai University, 2014. [37] 王二利. 矩形微通道内流动沸腾流阻特性及可视化研究[D]. 广州:华南理工大学, 2013. WANG Erli. Flow resistance characteristics and visualization research on flow boiling rectangular microchannels[D]. Guangzhou:South China University of Technology, 2013. [38] 曹永娜. 利用CT扫描技术实现对岩芯微观驱替过程的研究[J]. 科学技术与工程, 2015, 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013 CAO Yongna. Study of microscopic blooding process using CT scanning technique[J]. Science Technology and Engineering, 2015, 15(6):64-68. doi:10.3969/j.issn.1671-1815.2015.06.013 [39] BLUNT M J, BRANKO B, DONG Hu, et al. Pore-scale imaging and modelling[J]. Advances in Water Resources, 2013, 51(1):197-216. doi:10.1016/j.advwatres.2012.03.003 [40] LIU Z H, YANG Y F, YAO J, et al. Pore-scale remaining oil distribution under different pore volume water injection based on CT technology[J]. Advances in Geo-energy Research, 2017, 1(3):171-181. [41] BULTREYS T, BOONE M A, BOONE M N, et al. Fast laboratory-based micro-computed tomography for porescale research:Illustrative experiments and perspectives on the future[J]. Advances in Water Resources, 2016, 95:341-351. doi:10.1016/j.advwatres.2015.05.012 [42] BULTREYS T, BOEVER W D, CNUDDE V. Imaging and image-based fluid transport modeling at the pore scale in geological materials:A practical introduction to the current state-of-the-art[J]. Earth-science Reviews, 2016, 155:93-128. doi:10.1016/j.earscirev.2016.02.001 [43] KHISHVAND M, AKBARABADI M, PIRI M. Microscale experimental investigation of the effect of flow rate on trapping in sandstone and carbonate rock samples[J]. Advances in Water Resources, 2016, 94:379-399. doi:10.1016/j.advwatres.2016.05.012 [44] MENKE H P, BIJELJIC B, ANDREW M G, et al. Dynamic three-dimensional pore-scale imaging of reaction in a carbonate at reservoir conditions[J]. Environmental Science & Technology, 2015, 49(7):4407-4414. doi:10.1021/es505789f [45] ARNS C, KNACKSTEDT M A. Virtual permeametry on microtomographic images[J]. Journal of Petroleum Science and Engineering, 2004, 45(1):41-46. doi:10.1016/j.petrol.2004.05.001 [46] DONG Hu, TOUATI M, BLUNT, et al. Pore network modeling:Analysis of pore size distribution of arabian core samples[C]. SPE 105156, 2007. doi:10.2118/105156-MS [47] BLUNT M J. Flow in porous media-pore-network models and multiphase flow[J]. Current Opinion in Colloid & Interface Science, 2001, 6(3):197-207. doi:10.1016/S13590294(01)00084-X [48] ARNS C H, KNACKSTEDT M A, PINCZEWSKI W V, et al. Computation of linear elastic properties from microtomographic images:Methodology and agreement between theory and experiment[J]. Geophysics, 2002, 67(5):1396-1405. doi:10.1190/1.1512785 [49] KEEHM Y, MUKERJI T, PRASAD M, et al. Permeability prediction from thin sections:3D reconstruction and lattice-boltzmann flow simulation[J]. Geophysics Research Letter, 2004, 31(310):1668. doi:10.1029/2003GL018761 [50] SAIN R. Numerical simulation of pore-scale heterogeneity and its effects on elastic, electrical, and transport properties[J]. Geophysics, 2012, 76(6):125. doi:10.1190/20111206-GEODIS.2 [51] 宋睿. 基于微尺度重建模型的岩石热—流—固耦合细观机理研究[D]. 成都:西南石油大学, 2016. SONG Rui. Research on micro thermal-hydro-mechanical coupling mechanism based on pore scale model of rock[D]. Chengdu:Southwest Petroleum University, 2016. [52] FATT I. Capillarity permeability-The network model of porous mediai. Capillary pressure characteristics[J]. Trans. AIME, 1956, 207(7):144-159. [53] FATT I. The network model of porous media Ⅲ. Dynamic properties of networks with tube radius distribution[J]. Trans. AIME, 1956, 207:164-181. [54] CHATZIS I, DULLIEN F A L. Modelling pore structure by 2D and 3D networks with application to sandstones[J]. Journal of Canadian Petroleum Technology, 1977, 16(1):97-108. doi:10.2118/77-01-09 [55] PURCELL W R. Capillary pressures-their measurement using mercury and the calculation of permeability therefrom[J]. Journal of Petroleum Technology, 1949, 1(2):39-48. doi:10.2118/949039-G [56] DULLIEN F A L. Single phase flow through porous media and pore structure[J]. The Chemical Engineering Journal, 1975, 10(1):1-34. doi:10.1016/0300-9467(75)88013-0 [57] SCHEIDEGGER A E. Physics of flow through porous media[M]. Toronto:University of Toronto, 1963. [58] 员美娟,郑伟. 单毛细管中卡森流体的分形分析[J]. 武汉科技大学学报(自然科学版), 2012, 35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.018 YUAN Meijuan, ZHENG Wei. Fractal analysis of casson fluid flow in a capillary[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2012, 35(3):229-231. doi:10.3969/j.issn.1674-3644.2012.03.018 [59] 员美娟. 分形毛细管中Reiner-Philippoff非牛顿流体的有效渗透率研究[J]. 武汉科技大学学报(自然科学版), 2013, 36(2):158-160. doi:10.3969/j.issn.1674-3644.2013.02.018 YUAN Meijuan. Effective permeability of reinerphilippoff fluid in a fractal capillary[J]. Journal of Wuhan University of Science and Technology (Natural Science Edition), 2013, 36(2):158-160. doi:10.3969/j.issn.16743644.2013.02.018 [60] ØREN P E, BAKKE S, ARNTZEN O J. Extending predictive capabilities to network models[J]. SPE Journal, 1998, 3(4):324-336. doi:10.2118/52052-PA [61] PATZEK T W. Verification of a complete pore network simulator of drainage and imbibition[J]. SPE Journal, 2001, 6(2):144-156. doi:10.2118/71310-PA [62] PIRI M, BLUNT M J. Three-dimensional mixed-wet random pore-scale network modeling of two-and three-phase flow in porous MEDIA I. Model description[J]. Physical Review E, 2005, 71(2):026301. doi:10.1103/PhysRevE.71.026301 [63] 叶礼友. 基于N-S方程的孔隙介质微观渗流数值模拟[D]. 武汉:武汉工业学院, 2008. YE Liyou. Numerical simulation of microcosmic seepage in porous media based on N-S equation[D]. Wuhan:Wuhan Polytechnic University, 2008. [64] VARLOTEAUX C, BEKRI S, ADLER P M. Pore network modelling to determine the transport properties in presence of a reactive fluid:From pore to reservoir scale[J]. Advances in Water Resources, 2013, 53(2):87-100. doi:10.1016/j.advwatres.2012.10.004 [65] 陈强. 基于高分辨率成像技术的页岩孔隙结构表征[D]. 成都:西南石油大学, 2014. CHEN Qiang. Pore structure characterization of shale based on high resolution imaging technology[D]. Chengdu:Southwest Petroleum University, 2014. [66] 王波,宁正福. 多孔介质微观模型重构方法研究[J]. 油气藏评价与开发, 2012, 2(2):45-49. doi:10.3969/j.issn.2095-1426.2012.02.009 WANG Bo, NING Zhengfu. Research on the reconstruction method of the micro-model of porous medium[J]. Reservoir Evaluation and Development, 2012, 2(2):45-49. doi:10.3969/j.issn.2095-1426.2012.02.009 [67] LIANG Z, IOANNIDIS M A, CHATZIS I. Geometric and topological analysis of three-dimensional porous media:Pore space partitioning based on morphological skeletonization[J]. Journal of Colloid & Interface Science, 2000, 221(1):13-24. doi:10.1006/jcis.1999.6559 [68] ØREN P E, BAKKE S. Reconstruction of berea sandstone and pore-scale modelling of wettability effects[J]. Journal of Petroleum Science & Engineering, 2003, 39(3):177-199. doi:10.1016/S0920-4105(03)00062-7 [69] JAMSHIDI S, BOOZARJOMEHRY R B, PISHVAIE M R. Application of GA in optimization of pore network models generated by multi-cellular growth algorithms[J]. Advances in Water Resources, 2009, 32(10):1543-1553. doi:10.1016/j.advwatres.2009.07.007 [70] AL-KHARUSI A S, BLUNT M J. Network extraction from sandstone and carbonate pore space images[J]. Journal of Petroleum Science and Engineering, 2007, 56(4):219-231. doi:10.1016/j.petrol.2006.09.003 [71] RAEESI B, PIRI M. The effects of wettability and trapping on relationships between interfacial area, capillary pressure and saturation in porous media:A pore-scale network modeling approach[J]. Journal of Hydrology, 2009, 376(3):337-352. doi:10.1016/j.jhydrol.2009.07.060 [72] BAUER D, YOUSSEF S, FLEURY M, et al. Improving the estimations of petrophysical transport behavior of carbonate rocks using a dual pore network approach combined with computed micro-tomography[J]. Transport in Porous Media, 2012, 94(2):505-524. doi:10.1007/s11242-012-9941-z [73] MASON G, MORROW N R. Capillary behavior of a perfectly wetting liquid in irregular triangular tubes[J]. Journal of Colloid and Interface Science, 1991, 141(1):262-274. doi:10.1016/0021-9797(91)90321-X [74] LIU Jianjun, WANG Yao, SONG Rui. A pore scale flow simulation of reconstructed model based on the micro seepage experiment[J]. Geofluids, 2017(5):1-8. doi:10.1155/2017/7459346 [75] SONG Rui, CUI Mengmeng, LIU Jianjun, et al. A porescale simulation on thermal-hydromechanical coupling mechanism of rock[J]. Geofluids, 2017(21):7510527. doi:10.1155/2017/7510527 [76] JU Yang, WANG Huijie, YANG Yongming, et al. Numerical simulation of mechanisms of deformation, failure and energy dissipation in porous rock media subjected to wave stresses[J]. Science China:Technological Sciences, 2010, 53(4):1098-1113. doi:10.1007/s11431-010-0126-0 [77] SONG Rui, LIU Jianjun, CUI Mengmeng. A new method to reconstruct structured mesh model from micro-computed tomography images of porous media and its application[J]. International Journal of Heat & Mass Transfer, 2017, 109:705-715. doi:10.1016/j.ijheatmasstransfer.2017.02.053 [78] ALDER B J, WAINWRIGHT T E. Phase transition for a hard sphere system[J]. Journal of Chemical Physics, 1957, 27(5):1208-1209. doi:10.1063/1.1743957 [79] CHEN Shiyi, DOOLEN G D. Lattice boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics, 1998, 30(1):329-364. doi:10.1146/annurev.fluid.30.1.329 [80] BRUCE G H, PEACEMAN D W, RACHFORD H H, et al. Calculations of unsteady-state gas flow through porous media[J]. Journal of Petroleum Technology, 1953, 5(3):79-92. doi:10.2118/221-G [81] SHIN J Y, ABBOTTN L. Combining molecular dynamics simulations and transition state theory to evaluate the sorption rate constants for decanol at the surface of water[J]. Langmuir, 2001, 17(26):8434-8443. doi:10.1021/la0106891 [82] SUN H, YAO J, CAO Y C, et al. Characterization of gas transport behaviors in shale gas and tight gas reservoirs by digital rock analysis[J]. International Journal of Heat and Mass Transfer, 2017, 104:227-239. doi:10.1016/j.ijheatmasstransfer.2016.07.083 [83] LADD A J C. Numerical simulations of particulate suspensions via a discretized boltzmann equation partⅡ:Numerical results[J]. Journal of Fluid Mechanics, 1994, 271(271):285-309. doi:10.1017/S0022112094001783 [84] SHAN X, CHEN H. Lattice boltzmann model for simulating flows with multiple phases and components[J]. Physical Review E:Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 1993, 47(3):1815. doi:10.1103/PhysRevE.47.1815 [85] QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for navier-stokes equation[J]. Europhysics Letters, 1992, 17(6):479. doi:10.1209/0295-5075/17/6/001 [86] GUO Z L, SHI B C, WANG N C. Lattice BGK model for incompressible navier-stokes equation[J]. Journal of Computational Physics, 2000, 165(1):288-306. doi:10.1006/jcph.2000.6616 [87] FUENTES J M, KUZNIK F, JOHANNES K, et al. Development and validation of a new LBM-MRT hybrid model with enthalpy formulation for melting with natural convection[J]. Physics Letters A, 2014, 378(4):374-381. doi:10.1016/j.physleta.2013.11.042 [88] 郭照立,郑楚光. 格子Boltzmann方法的原理及应用[M]. 北京:科学出版社, 2008. GUO Zhaoli, ZHENG Chuguang. Principle and application of lattice boltzmann method[M]. Beijing:Science Press, 2008. [89] KALYANI V K, PALLAVIKA, CHAKRABORTY S K. Finite-difference time-domain method for modelling of seismic wave propagation in viscoelastic media[J]. Applied Mathematics & Computation, 2014, 237(3):133-145. doi:10.1016/j.amc.2014.03.029 [90] LIU Jianjun, SONG Rui, CUI Mengmeng. Improvement of predictions of petrophysical transport behavior using three-dimensional finite volume element model with micro-CT images[J]. Journal of Hydrodynamics, 2015, 27(2):234-241. doi:10.1016/S1001-6058(15)60477-2 [91] WALTZ J, CANFIELD T R, MORGAN N R, et al. Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions[J]. Computers & Fluids, 2013, 81(15):57-67. doi:10.1016/j.compfluid.2013.03.025 [92] BREBBIA C A, WROBEL L C. Boundary element method for fluid flow[J]. Advances in Water Resources, 1979, 2:83-89. doi:10.1016/0309-1708(79)90015-0 [93] 姚军,赵秀才. 数字岩芯及孔隙级渗流模拟理论[M]. 北京:石油工业出版社, 2010. YAO Jun, ZHAO Xiucai. Digital core and modelling theory of pore scale seepage[M]. Beijing:Petroleum Industry Press, 2010. [94] VALVATNE P H. Predictive pore-scale modelling of multiphase flow[D]. London:Imperial College, 2009. [95] LENORMAND R, ZARCONE C, SARR A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts[J]. Journal of Fluid Mechanics, 2006, 135(135):337-353. doi:10.1017/S0022112083003110 [96] 赵秀才. 数字岩芯及孔隙网络模型重构方法研究[D]. 青岛:中国石油大学, 2009. ZHAO Xiucai. Numerical rock construction and pore network extraction[D]. Qingdao:China University of Petroleum (East China), 2009. [97] BLUNT M J. Physically-based network modeling of multiphase flow in intermediate-wet porous media[J]. Journal of Petroleum Science & Engineering, 1998, 20(3-4):117-125. doi:10.1016/S0920-4105(98)00010-2 |
[1] | 王有智. 珲春盆地八连城矿区煤岩孔隙分形特征[J]. 西南石油大学学报(自然科学版), 2020, 42(1): 57-68. |
[2] | 胡德高, 郭肖, 郑爱维, 舒志国, 张柏桥. 页岩气藏压裂井产能评价及分析[J]. 西南石油大学学报(自然科学版), 2019, 41(6): 132-138. |
[3] | 陆云龙, 崔云江, 李瑞娟, 王培春. 基于多孔介质模型的储层裂缝孔隙度计算方法[J]. 西南石油大学学报(自然科学版), 2019, 41(5): 67-74. |
[4] | 杨毅, 袁伟, 杨冬, 谭伟, 吴进波. 北部湾盆地乌石凹陷低阻油层微观成因机理[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 81-89. |
[5] | 印森林, 陈恭洋, 陈玉琨, 吴小军. 砂砾岩储层孔隙结构复杂模态差异机制[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 1-17. |
[6] | 杨树坤, 郭宏峰, 赵广渊, 季公明, 张博. 致密砂岩油藏注热水降压增注实验研究[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 102-110. |
[7] | 刘红岐, 李博, 王拥军, 田杰, 孙杨沙. 川中大安寨段致密油储层储集特征研究[J]. 西南石油大学学报(自然科学版), 2018, 40(6): 47-55. |
[8] | 张颖, 张海涛, 何希鹏, 高玉巧, 张培先. 渝东南武隆地区龙马溪组页岩孔裂隙特征研究[J]. 西南石油大学学报(自然科学版), 2018, 40(4): 29-39. |
[9] | 彭军, 曹俊娇, 李斌, 夏青松, 刘昕羽. 塔北与巴楚下丘里塔格群白云岩储层特征对比[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 1-14. |
[10] | 赵建斌, 万金彬, 罗安银, 程道解, 李慧莹. 储层品质评价中的核磁共振研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 89-96. |
[11] | 张恒荣, 何胜林, 郑香伟, 胡向阳, 曾少军. 复杂孔隙结构低阻油层含水饱和度解释新方法[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 97-103. |
[12] | 宁玉萍, 王峻峰, 罗东红, 张伟, 戴宗. 流花油田礁灰岩储层微观性质及驱替特征研究[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 34-44. |
[13] | 刘建军, 吴明洋, 宋睿, 黄刘科, 戴小军. 低渗透油藏储层多尺度裂缝的建模方法研究[J]. 西南石油大学学报(自然科学版), 2017, 39(4): 90-103. |
[14] | 牛涛, 王晖, 胡晓庆, 张宇焜, 高玉飞. 基于复杂岩性识别的低渗储层综合分类评价[J]. 西南石油大学学报(自然科学版), 2017, 39(3): 47-56. |
[15] | 陈世加, 高兴军, 喻建, 马捷, 黄海. 鄂尔多斯盆地中西部长2油层低阻成因分析[J]. 西南石油大学学报(自然科学版), 2017, 39(2): 1-8. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||