西南石油大学学报(自然科学版) ›› 2021, Vol. 43 ›› Issue (6): 22-32.DOI: 10.11885/j.issn.1674-5086.2020.10.11.01

• 力学专刊 • 上一篇    下一篇

基于反双曲正弦函数的循环本构模型

朱一林1,2,3, 王凯1   

  1. 1. 西南石油大学土木工程与测绘学院, 四川 成都 610500;
    2. 油气藏地质及开发工程国家重点实验室·西南石油大学, 四川 成都 610500;
    3. 四川大学建筑与环境学院, 四川 成都 610065
  • 收稿日期:2020-10-11 发布日期:2022-01-08
  • 通讯作者: 朱一林,E-mail:zhuyiln@swpu.edu.cn
  • 作者简介:朱一林,1988年生,男,汉族,山东单县人,副研究员,博士,主要从事材料多场耦合循环变形和疲劳及拉胀超材料设计方面的研究。E-mail:zhuyiln@swpu.edu.cn;王凯,1996年生,男,汉族,四川眉山人,硕士研究生,主要从事材料多场耦合循环变形和疲劳及拉胀超材料设计方面的研究。E-mail:wk1293012891@icloud.com
  • 基金资助:
    国家自然科学基金青年基金(11702036);四川省科技厅国际合作项目(2020YFH0127);油气藏地质及开发工程国家重点实验室开放课题(PLN201929);中国博士后科学基金面上项目(2019M663492)

An Arcsinh-function Based on Cyclic Constitutive Model

ZHU Yilin1,2,3, WANG Kai1   

  1. 1. School of Civil Engineering and Geomatics, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    2. State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500, China;
    3. College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
  • Received:2020-10-11 Published:2022-01-08

摘要: 为改善本构模型对循环变形应力-应变滞回环的预测能力,基于反双曲正弦函数提出了一个新的随动硬化律。在该硬化律中,背应力分为长程、中程和短程3部分,并且每部分都符合“A-F”硬化律的演化形式(即包含线性项和动态恢复项)。在长程和中程背应力中,动态恢复系数逐渐演化以描述大变形瞬态包辛格效应,并且系数中引入了棘轮系数以描述材料的棘轮行为;在短程背应力中,线性项和动态恢复项分别由两部分组成,其中一部分只在反向屈服发生时起作用以描述小变形下反向屈服塑性模量降低的行为。在单调加载时,该随动硬化律可以积分为一个反双曲正弦函数,并且调控单调加载响应、棘轮变形演化和滞回环形状的参数互不耦合。基于该随动硬化律,在次弹性大变形框架下建立了循环本构模型,并考察了其对棘轮变形和应力-应变滞回环的预测能力。

关键词: 循环本构模型, 棘轮效应, 滞回环, 大变形, 对数应力率

Abstract: A novel kinematic hardening rule is proposed to improve the predictive capability for cyclic stress-strain hysteresis loops. In the proposed rule, the back stress is decomposed into long, middle and short-range components with each addressing an " A-F"evolution rule consisting of a linear hardening and a dynamic recovery term. For the long and middle-range components, the dynamic recovery coefficients are postulated to be evaluated with deformation to describe the transient Bauschinger effect and each contains a ratchetting coefficient accounting for ratchetting evolution. For the short-range component, the linear hardening and dynamic recovery terms are further divided into two parts respectively, with one part in each activating only when the reverse loading occurs to describe the lower plastic modulus at initial yielding stage during cyclic loading. Under the monotonic loading condition, the proposed rule is integrable and the integration form yields an Arcsinh-function. Besides, the material parameters for the proposed rule related to monotonic loading response, ratchetting behavior and stress-strain hysteresis loops can be determined separately. Finally, incorporating the proposed rule, a cyclic constitutive model is developed in the hypo-elastic finite deformation framework and the predictive capacity for ratchetting behavior and stress-strain hysteresis loops is validated.

Key words: cyclic constitutive model, ratchetting, stress-strain hysteresis loops, large deformation, logarithmic stress rate

中图分类号: