[1] ZHU Yilin, KANG Guozheng, YU Chao. A finite cyclic elastop-lastic constitutive model to improve the description of cyclic stress-strain hysteresis loops[J]. International Journal of Plasticity, 2017, 95:191-215. doi:10.1016/j.ijplas.2017.04.009 [2] KANG Guozheng. Ratchetting:Recent progresses in phenomenon observation, constitutive modeling and application[J]. International Journal of Fatigue, 2008, 30(8):1448-1472. doi:10.1016/j.ijfatigue.2007.10.002 [3] ZHENG Xiaotao, WANG Wei, SUN Jujuan, et al. Viscoplastic constitutive modelling of the ratchetting behavior of 35CrMo steel under cyclic uniaxial tensile loading with a wide range of stress amplitude[J]. European Journal of Mechanics-A/Solids, 2019, 76:312-320. doi:10.1016/j.euromechsol.-2019.04.009 [4] TALEB L, CAILLETAUD G. An updated version of the multimechanism model for cyclic plasticity[J]. International Journal of Plasticity, 2010, 26(6):859-874. doi:10.1016/j.ijplas.2009.11.002 [5] TALEB L, SAI K, CAILLETAUD G. Capabilities of the multimechanism model in the prediction of the cyclic behavior of various classes of metals[M]. Berlin:Springer, 2015:413-439. doi:10.1007/978-3-319-19440-0_19 [6] WOLFF M, TALEB L. Consistency for two multimechanism models in isothermal plasticity[J]. International Journal of Plasticity, 2008, 24(11):2059-2083. doi:10.1016/j.ijplas.2008.03.001 [7] FREDERICK C, ARMSTRONG P J. A mathematical representation of the multiaxial Bauschinger effect[J]. Materials at High Temperatures, 2007, 24(1):1-26. doi:10.1179/096034007X207589 [8] PRAGER W. Recent developments in the mathematical theory of plasticity[J]. Journal of Applied Physics, 1949, 20(3):235-241. doi:10.1063/1.1698348 [9] CHABOCHE J L, NOUAILHAS D. Constitutive modeling of ratcheting effect:Part II:Possibilities of some additional kinematic rules[J]. ASME Journal of Engineering Materials and Technology, 1989, 111(4):409-416. [10] CHABOCHE J L. On some modification of kinematic hardening to improve the description of ratchetting effect[J]. International Journal of Plasticity, 1991, 7(7):661-678. doi:10.1016/0749-6419(91)90050-9 [11] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery:Part I:Formulation and basic features for ratcheting behavior[J]. International Journal of Plasticity, 1993, 9(3):375-390. doi:10.1016/0749-6419(93)90042-O [12] OHNO N, WANG J D. Kinematic hardening rules with critical state of dynamic recovery, Part II:Application to experiments of ratcheting behavior[J]. International Journal of Plasticity, 1993, 9(3):391-403. doi:10.1016/0749-6419(93)90043-P [13] KARIM M, OHNO N. Kinematic hardening model suitable for ratcheting with steadystate[J]. International Journal of Plasticity, 2000, 16(3-4):225-240. doi:10.1016/S0749-6419(99)00052-2 [14] KANG G, OHNO N, NEBU A. Constitutive modeling of strain range dependent cyclic hardening[J]. International Journal of Plasticity, 2003, 19(10):1801-1819. doi:10.1016/S0749-6419(03)00016-0 [15] YU D J, CHEN G, YU W W, et al. Viscoplastic constitutive modeling on Ohno-Wang kinematic hardening rule for uniaxial ratcheting behavior of Z2CND18.12N steel[J]. International Journal of Plasticity, 2012, 28(1):88-101. doi:10.1016/j.ijplas.2011.06.001 [16] DETTMER W, REESE S. On the theoretical and numerical modelling of Armstrong-Frederick kinematic hardening in the finite strain regime[J]. Computer Methods in Applied Mechanics and Engineering, 2004, 193(1):87-116. doi:10.1016/j.cma.2003.09.005 [17] ZHU Y, KANG G, KAN Q, BRUHNS O T. Logarithmic stress rate based constitutive model for cyclic loading in finite plasticity[J]. International Journal of Plasticity, 2014, 54:34-55. doi:10.1016/j.ijplas.2013.08.004 [18] SHUTOV A V, KREIßIG R. Finite strain viscoplasticity with nonlinear kinematic hardening:Phenomenological modeling and time integration[J]. Computer Methods in Applied Mechanics and Engineering, 2008, 197(21-24):2015-2029. doi:10.1016/j.cma.2007.12.017 [19] HENANN D L, ANAND L. A large deformation theory for ratedependent elasticplastic materials with combined isotropic and kinematic hardening[J]. International Journal of Plasticity, 2009, 25(10):1833-1878. doi:10.1016/j.ijplas.2008.11.008 [20] YOSHIDA F, UEMORI T, FUJIWARA K. Elasticplastic behavior of steel sheets under inplanecyclic tensioncompression at large strain[J]. International Journal of Plasticity, 2002, 18(5-6):633-659. doi:10.1016/S0749-6419(01)00049-3 [21] DONG Yawei, KANG Guozheng, YU Chao. A dislocation-based cyclic polycrystalline viscoplastic constitutive model for ratchetting of metals with face-centered cubic crystal structure[J]. Computational Material Science, 2014, 91:75-82. doi:10.1016/j.commatsci.2014.04.030 [22] KANG Guozheng, GAO Qing, YANG Xianjie. A viscoplastic constitutive model incorporated with cyclic hardening for uniaxial/multiaxial ratcheting of SS304 stainless steel at room temperature[J]. Mechanics of Materials, 2002, 34(9):521-531. doi:10.1016/S0167-6636(02)00153-9 [23] XIAO H, BRUHNS O T, MEYERS A. Logarithmic strain, logarithmic spin and logarithmic rate[J]. Acta Mechanica, 1997, 124(1-4):89-105. doi:10.1007/BF01213020 [24] XIAO H, BRUHNS O T, MEYERS A. On objectivecorotational rates and their defining spin tensors[J]. International Journal of Solids and Structures, 1998, 35(30):4001-4014. doi:10.1016/S0020-7683(97)00267-9 [25] BRUHNS O T, XIAO H, MEYERS A. Self-consistent eulerian rate type elasto-plasticity models based upon the logarithmic stress rate[J]. International Journal of Plasticity, 1999, 15(5):479-520. doi:10.1016/S0749-6419(99)-00003-0 [26] KANG Guozheng, GAO Qing, YANG Xianjie. Experimental study on the cyclic deformation and plastic flow of U71Mn rail steel[J]. International Journal of Mechanical Science, 2002, 44(8):1685-1695. doi:10.1016/S0020-7403(02)0006 |