[1] 江同文,孙雄伟.库车前陆盆地克深气田超深超高压气藏开发认识与技术对策[J].天然气工业, 2018, 38(6):1-9.doi:10.3787/j.issn.1000-0976.2018.06.001 JIANG Tongwen, SUN Xiongwei.Development of Keshen ultra-deep and ultra-high pressure gas reservoirs in the Kuqa Foreland Basin, Tarim Basin: Understanding points and technical countermeasures[J].Natural Gas Industry, 2018, 38(6): 1–9.doi: 10.3787/j.issn.1000-0976.2018.06.001 [2] 蔡珺君,彭先,李骞,等.四川盆地重点海相碳酸盐岩气藏产能评价现状及展望[J].断块油气田, 2021, 28(5):655-660.doi:10.6056/dkyqt202105015 CAI Junjun, PENG Xian, LI Qian, et al.Present situation and prospect of productivity evaluation of key marine carbonate gas reservoirs in Sichuan Basin[J].Fault-Block Oil and Gas Field, 2021, 28(5): 655–660.doi: 10.6056/dkyqt202105015 [3] ZENG Lianbo, GONG Lei, GUAN Cong, et al.Natural fractures and their contribution to tight gas conglomerate reservoirs: A case study in the northwestern Sichuan Basin, China[J].Journal of Petroleum Science and Engineering, 2022, 210: 110028.doi: 10.1016/j.petrol.2021.110028 [4] ZHANG Zhaode, YU Hongguo, LI Chao.Quantitative characterization of fracture-pore distribution and effects on production capacity of weathered volcanic crust reservoirs: Insights from volcanic gas reservoirs of the Dixi Area, Junggar Basin, western China[J].Marine and Petroleum Geology, 2022, 140: 105651.doi: 10.1016/j.marpet geo.2022.105651 [5] 廖代勇,边芳霞,林平.气井产能分析的发展研究[J].天然气工业, 2006, 26(2):100-101.doi: 10.3321/j.iss n:1000-0976.2006.02.031 LIAO Daiyong, BIAN Fangxia, LIN Ping.Deliverability analytical approach of gas well[J].Natural Gas Industry, 2006, 26(2): 100–101.doi: 10.3321/j.issn:10000976.2006.02.031 [6] 陈元千.确定气井绝对无阻流量的简单方法[J].天然气工业, 1987, 7(1):59-63.CHEN Yuanqian.A simple way to determine the absolute open-flow capacity of a gas well[J].Natural Gas Industry, 1987, 7(1): 59–63. [7] 陈元千.确定气井绝对无阻流量和产能的一个简易方法[J].天然气工业, 1987, 7(4):38-43.CHEN Yuanqian.A simple way to determine the absolute open-flow capacity and productivity of a gas well[J].Natural Gas Industry, 1987, 7(4): 38–43. [8] 邓勇,马成,孙宝,等.基于生产数据分析的气井产能动态评价方法[J].油气井测试, 2022, 31(2):74-78.doi:10.19680/j.cnki.1004-4388.2022.02.013 DENG Yong, MA Cheng, SUN Bao, et al.Dynamic productivity evaluation method of gas well based on production data analysis[J].Well Testing, 2022, 31(2): 74–78.doi: 10.19680/j.cnki.1004-4388.2022.02.013 [9] 马旭,常森,王涛,等.修正等时试井资料解释改进方法对比[J].钻采工艺, 2021, 44(3):67-71.doi:10.3969/J.ISSN.1006-768X.2021.03.16 MA Xu, CHANG Sen, WANG Tao, et al.Comparison of improved interpreting methods of modified isochronal well test data[J].Drilling & Production Technology, 2021, 44(3): 67–71.doi: 10.3969/J.ISSN.1006-768X.2021.03.16 [10] 康凯,赵林,罗宪波,等.裂缝性潜山气藏产能评价新方法及其应用[J].中国海上油气, 2021, 33(3):100-106.doi:10.11935/j.issn.1673-1506.2021.03.011 KANG Kai, ZHAO Lin, LUO Xianbo, et al.A new productivity evaluation method for fractured buried hill gas reservoirs and its application[J].China Offshore Oil and Gas, 2021, 33(3): 100–106.doi: 10.11935/j.issn.1673-1506.2021.03.011 [11] 吴锦伟,李勇仁,曹军,等.渭北长3 裂缝性致密储层渗流特征及产能研究[J].西南石油大学学报(自然科学版), 2021, 43(3):136-145.doi:10.11885/j.issn.16745086.2019.10.28.02 WU Jinwei, LI Yongren, CAO Jun, et al.A study on seepage characteristics and productivity of fractured tight reservoir Chang 3 in Weibei[J].Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(3): 136–145.doi: 10.11885/j.issn.1674-5086.2019.10.28.02 [12] 闫海军,邓惠,万玉金,等.四川盆地磨溪区块灯影组四段强非均质性碳酸盐岩气藏气井产能分布特征及其对开发的指导意义[J].天然气地球科学, 2020, 31(8):1152-1160.doi:10.11764/j.issn.1672-1926.2020.01.001 YAN Haijun, DENG Hui, WAN Yujin, et al.The gas well productivity distribution characteristics in strong heterogeneity carbonate gas reservoir in the fourth Member of Dengying Formation in Moxi Area, Sichuan Basin[J].Natural Gas Geoscience, 2020, 31(8): 1152–1160.doi: 10.11764/j.issn.1672-1926.2020.01.001 [13] 王珂,杨海 军,李勇,等.库车 坳陷 克深 气田 致密 砂岩 储层 构造 裂缝 形成 序列 与分 布规 律[J].大地构造与成矿学, 2020, 44(1):30-46.doi:10.16539/j.ddgzyckx.2020.01.003 WANG Ke, YANG Haijun, LI Yong, et al.Formation sequence and distribution of structural fractures in compact sandstone reservoir of Keshen Gas Field in Kuqa Depression, Tarim Basin[J].Geotectonica et Metallogenia, 2020, 44(1): 30–46.doi: 10.16539/j.ddgzyckx.2020.01.003 [14] 付小涛,王益民,邵剑波,等.超深层裂缝性致密砂岩储层砂体、裂缝发育特征及对产能的影响:以塔里木盆地库车坳陷KS2气田为例[J].现代地质, 2021, 35(2):326-337.doi:10.19657/j.geoscience.10008527.2020.097 FU Xiaotao, WANG Yimin, SHAO Jianbo, et al.Characteristics and effect on productivity of the sandstone and fractures in ultra-deep and fractured tight sandstone gas reservoirs: A case study of KS2 Gasfield in Kuqa Depression, Tarim Basin[J].Geoscience, 2021, 35(2): 326–337.doi: 10.19657/j.geoscience.1000-8527.2020.097 [15] 王珂,张荣虎,王俊鹏,等.超深层致密砂岩储层构造裂缝分布特征及其成因——以塔里木盆地库车前陆冲断带克深气田为例[J].石油与天然气地质, 2021, 42(2):338-353.doi:10.11743/ogg20210207 WANG Ke, ZHANG Ronghu, WANG Junpeng, et al.Distribution and origin of tectonic fractures in ultra-deep tight sandstone reservoirs: A case study of Keshen Gas Field, Kuqa Foreland thrust belt, Tarim Basin[J].Oil & Gas Geology, 2021, 42(2): 338–353.doi: 10.11743/ogg20210207 [16] 杨海军,张荣虎,杨宪彰,等.超深层致密砂岩构造裂缝特征及其对储层的改造作用——以塔里木盆地库车坳陷克深气田白垩系为例[J].天然气地球科学, 2018, 29(7):942-950.doi:10.11764/j.issn.16721926.2018.06.018 YANG Haijun, ZHANG Ronghu, YANG Xianzhang, et al.Characteristics and reservoir improvement effect of structural fracture in ultra-deep tight sandstone reservoir: A case study of Keshen Gasfield, Kuqa Depression, Tarim Basin[J].Natural Gas Geoscience, 2018, 29(7): 942–950.doi: 10.11764/j.issn.1672-1926.2018.06.018 [17] 彭永洪,陈飞,李彦召,等.库车山前大斜度井储层改造试验与认识[J].钻采工艺, 2021, 44(3):33-36, 41.doi:10.3969/J.ISSN.1006-768X.2021.03.08 PENG Yonghong, CHEN Fei, LI Yanzhao, et al.Experiment and cognition of reservoir stimulation in highlydeviated well in Kuqa Foreland Basin[J].Drilling & Production Technology, 2021, 44(3): 33–36, 41.doi: 10.3969/ J.ISSN.1006-768X.2021.03.08 [18] 冯建伟,赵力彬,王焰东.库车坳陷克深气田超深层致密储层产能控制因素[J].石油学报, 2020, 41(4):478-488.doi:10.7623/syxb202004010 FENG Jianwei, ZHAO Libin, WANG Yandong.Controlling factors for productivity of ultra-deep tight reservoirs in Keshen Gas Field, Kuqa Depression[J].Acta Petrolei Sinica, 2020, 41(4): 478–488.doi: 10.7623/syxb202004010 [19] RASHID F, HUSSEIN D, LAWRENCE J A, et al.Fluid flow and permeability analysis of tight gas carbonate reservoir rocks using fractures and dynamic data[J].Journal of Natural Gas Science and Engineering, 2021, 90: 103894.doi: 10.1016/j.jngse.2021.103894 [20] 夏阳,邓英豪,金衍.裂缝性储层流体流动数值模拟研究进展[J].中国科学基金, 2021, 35(6):964-972.XIA Yang, DENG Yinghao, JIN Yan.Advances in numerical simulation of fluid flow in fractured reservoirs[J].Bulletin of National Natural Science Foundation of China, 2021, 35(6): 964–972. [21] NIE Renshi, FAN Xiaohui, LI Min, et al.Modeling transient flow behavior with the high velocity non-Darcy effect in composite naturally fractured-homogeneous gas reservoirs[J].Journal of Natural Gas Science and Engineering, 2021, 96: 104269.doi: 10.1016/j.jngse.2021.104269 [22] 常宝华,唐永亮,朱松柏,等.超深层裂缝性致密砂岩气藏试井特征及认识——以塔里木盆地克深气田为例[J].大庆石油地质与开发, 2021, 40(3):167-174.doi:10.19597/J.ISSN.1000-3754.202004037 CHANG Baohua, TANG Yongliang, ZHU Songbai, et al.Well test characteristics and understandings of the ultradeep fractured tight sandstone gas reservoirs: A case study on Keshen Gas Field in Tarim Basin[J].Petroleum Geology & Oilfield Development in Daqing, 2021, 40(3): 167– 174.doi: 10.19597/J.ISSN.1000-3754.202004037 [23] 谭先红,梁斌,王帅,等.一种低渗储层凝析气藏气井产能评价方法研究[J].油气藏评价与开发, 2021, 11(5):724-729.doi:10.13809/j.cnki.cn32-1825/te.2021.05.009 TAN Xianhong, LIANG Bin, WANG Shuai, et al.A productivity evaluation method of gas wells in condensate gas reservoirs with low permeability[J].Reservoir Evaluation and Development, 2021, 11(5): 724–729.doi: 10.13809/j.cnki.cn32-1825/te.2021.05.009 [24] 杜悦,崔欢,袁渊,等.天然裂缝对页岩气井产能的影响评价[J].天然气工业, 2021, 41(S1):118-123.doi:10.3787/j.issn.1000-0976.2021.S1.017 DU Yue, CUI Huan, YUAN Yuan, et al.Influence of natural fractures on the productivity of shale gas wells[J].Natural Gas Industry, 2021, 41(S1): 118–123.doi: 10.3787/j.issn.1000-0976.2021.S1.017 [25] 王羲.低渗气藏分支水平井气水两相产能影响因素分析[J].钻采工艺, 2019, 42(3):41-43, 49.doi:10.3969/J.ISSN.1006-768X.2019.03.12 WANG Xi.Study on gas-water productivity of multilateral horizontal wells in low permeability gas reservoir and factors[J].Drilling & Production Technology, 2019, 42(3): 41–43, 49.doi: 10.3969/J.ISSN.1006-768X.2019.03.12 |