[1] 康毅力,邵佳新,游利军,等. 深层致密砂岩气藏干湿交替诱发气井出砂实验模拟[J]. 油气地质与采收率, 2021, 28(2):127-134. doi:10.13673/j.cnki.cn37-1359/te.2021.02.016 KANG Yili, SHAO Jiaxin, YOU Lijun, et al. Experimental simulation of sand production induced by dry-wet alternation in deep tight sandstone gas reservoirs[J]. Petroleum Geology and Recovery Efficiency, 2021, 28(2):127-134. doi:10.13673/j.cnki.cn37-1359/te.2021.02.016 [2] 王学成,乔东宇,刘灵,等. 柴达木盆地西北地区井壁失稳要因分析[J]. 世界石油工业, 2022, 29(6):63-71. WANG Xuecheng, QIAO Dongyu, LIU Ling, et al. Analysis on the main factors of wellbore instability in northwest Qaidam Basin[J]. World Petroleum Industry, 2022, 29(6):63-71. [3] 马天寿,张东洋,杨赟,等. 基于机器学习模型的斜井坍塌压力预测方法[J]. 天然气工业, 2023, 43(9):119-131. doi:10.3787/j.issn.1000-0976.2023.09.012 MA Tianshou, ZHANG Dongyang, YANG Yun, et al. Machine learning model based collapse pressure prediction method for inclined wells[J]. Natural Gas Industry, 2023, 43(9):119-131. doi:10.3787/j.issn.1000-0976.2023.09.012 [4] 霍进,石建刚,沈新普,等. 新区块及未钻井深部地层孔隙压力预测方法——以准噶尔盆地南缘高压气井为例[J]. 天然气工业, 2021, 41(3):104-111. doi:10.3787/j.issn.1000-0976.2021.03.012 HUO Jin, SHI Jiangang, SHEN Xinpu, et al. Pore pressure prediction methods for new blocks and undrilled deep strata:A case study of the high pressure gas wells along the southern margin of the Junggar Basin[J]. Natural Gas Industry, 2021, 41(3):104-111. doi:10.3787/j.issn.1000-0976.2021.03.012 [5] 巴忠臣,邱子刚,张宗斌,等. 高探1 井出水来源分析及稳产制度[J]. 新疆石油地质, 2021, 42(1):88-93. doi:10.7657/XJPG20210112 BA Zhongchen, QIU Zigang, ZHANG Zongbin, et al. Analysis on produced water source in Well Gaotan-1 and how to keep stable production[J]. Xinjiang Petroleum Geology, 2021, 42(1):88-93. doi:10.7657/XJPG2021-0112 [6] 王亮亮,王杰祥,王鹏,等. 东河油田注气出砂主次影响因素及技术对策[J]. 断块油气田, 2022, 29(5):680-686. doi:10.6056/dkyqt202205017 WANG Liangliang, WANG Jiexiang, WANG Peng, et al. Primary and secondary factors affecting sand production by gas injection in Donghe Oilfield and technical countermeasures[J]. Fault-Block Oil and Gas Field, 2022, 29(5):680-686. doi:10.6056/dkyqt202205017 [7] 王亮亮,王杰祥,张鹏,等. 酸化气驱交变载荷对超深层岩石强度及出砂影响[J]. 断块油气田, 2023, 30(1):136-142. doi:10.6056/dkyqt202301019 WANG Liangliang, WANG Jiexiang, ZHANG Peng, et al. Influence of acidification, gas flooding and alternating load on rock strength and sand production in ultradeep wells[J]. Fault-Block Oil and Gas Field, 2023, 30(1):136-142. doi:10.6056/dkyqt202301019 [8] 王成虎,高桂云,贾晋,等. H储气库注采诱发应力场及断层滑动趋势变化[J]. 天然气工业, 2020, 40(10):76-85. doi:10.3787/j.issn.1000-0976.2020.10.009 WANG Chenghu, GAO Guiyun, JIA Jin, et al. Variation of stress field and fault slip tendency induced by injection and production in the H underground gas storage[J]. Natural Gas Industry, 2020, 40(10):76-85. doi:10.3787/j.issn.1000-0976.2020.10.009 [9] 孙靖,齐洪 岩,薛晶 晶,等. 准噶 尔盆 地深 层超 深层致密砾岩储层特征及控制因素[J]. 天然气工业, 2023, 43(8):26-37. doi:10.3787/j.issn.1000-0976.2023.08.003 SUN Jing, QI Hongyan, XUE Jingjing, et al. Characteristics and controlling factors of deep and ultra deep tight conglomerate reservoirs in the Junggar Basin[J]. Natural Gas Industry, 2023, 43(8):26-37. doi:10.3787/j.issn.1000-0976.2023.08.003 [10] 杨虎,薛晓军,陈向辉,等. 基于测井数据反演火成岩力学参数模型的建立及其工程应用[J]. 天然气工业, 2021, 41(5):101-109. doi:10.3787/j.issn.1000-0976.2021.05.011 YANG Hu, XUE Xiaojun, CHEN Xianghui, et al. Establishment of igneous rock mechanical parameters model based on electric logging data inversion and its engineering application[J]. Natural Gas Industry, 2021, 41(5):101-109. doi:10.3787/j.issn.1000-0976.2021.05.011 [11] 代春萌,曾庆才,郭晓龙,等. 塔里木盆地库车坳陷克深气田构造特征及其对气藏的控制作用[J]. 天然气勘探与开发, 2017, 40(1):17-22. doi:10.3969/j.issn.1673-3177.2017.01.003 DAI Chunmeng, ZENG Qingcai, GUO Xiaolong, et al. Structural characteristics of Keshen Gasfield in Kuqa Depression of Tarim Basin and their controlling effects on gas reservoirs[J]. Natural Gas Exploration and Development, 2017, 40(1):17-22. doi:10.3969/j.issn.1673-3177.2017.01.003 [12] 卢宇. 压力衰竭疏松砂岩气藏自流注气水平井射孔优化研究[D]. 成都:西南石油大学, 2016. LU Yu. Research on perforation optimization of self flowing gas injection horizontal wells in pressure depleted unconsolidated sandstone gas reservoirs[D]. Chengdu:Southwest Petroleum University, 2016. [13] 金衍,陈勉,柳贡慧,等. 大位移井的井壁稳定力学分析[J]. 地质力学学报, 1999, 5(1):4-11. doi:10.3969/j.issn.1006-6616.1999.01.002 JIN Yan, CHEN Mian, LIU Gonghui, et al. Wellbore stability analysis of extended reach wells[J]. Journal of Geomechanics, 1999, 5(1):4-11. doi:10.3969/j.issn.1006-6616.-1999.01.002 [14] 孟召平,李明生,陆鹏庆,等. 深部温度、压力条件及其对砂岩力学性质的影响[J]. 岩石力学与工程学报, 2006, 25(6):1177-1181. doi:10.3321/j.issn:1000-6915.2006.06.014 MENG Zhaoping, LI Mingsheng, LU Pengqing, et al. Temperature and pressure under deep conditions and their effects on the mechanical properties of sandstone[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(6):1177-1181. doi:10.3321/j.issn:1000-6915.2006.06.014 [15] 赵彦东,赵文奎,柯尊乾,等. 温度对深井岩石力学性质的影响[J]. 重庆科技学院学报(自然科学版), 2010, 2(12):71-73. doi:10.3969/j.issn.1673-1980.2010.02.022 ZHAO Yandong, ZHAO Wenkui, KE Zunqian, et al. Influence analysis of temperature on rock mechanical property in deep well[J]. Journal of Chongqing University of Science and Technology (Natural Science Edition), 2010, 2(12):71-73. doi:10.3969/j.issn.1673-1980.2010.02.022 [16] 姚先荣,杨成,晏凌,等. 高温高压天然气深井开采出砂预测模型优选[J]. 钻采工艺, 2018, 41(3):37-40. doi:10.3969/J.ISSN.1006-768X.2018.03.11 YAO Xianrong, YANG Cheng, YAN Ling, et al. Optimization of sand production prediction model for high temperature and high pressure natural gas deep well production[J]. Drilling and Production Technology, 2018, 41(3):37-40. doi:10.3969/J.ISSN.1006-768X.2018.03.11 [17] 邓华锋,原先凡,李建林,等. 饱水度对砂岩纵波波速及强度影响的试验研究[J]. 岩石力学与工程学报, 2013, 32(8):1625-1631. DENG Huafeng, YUAN Xianfan, LI Jianlin. Experimental research on influence of saturation degree on sandstone longitudinal wave velocity and strength[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(8):1625-1631. [18] ZHANG Rui, SHI Xianya, ZHU Ruifeng, et al. Critical drawdown pressure of sanding onset for offshore depleted and water cut gas reservoirs:Modeling and application[J]. Journal of Natural Gas Science & Engineering, 2016, 34:159-169. doi:10.1016/j.jngse.2016.06.057 [19] MOHAMAD-HUSSEIN A, NI Q. Numerical modeling of onset and rate of sand production in perforated wells[J]. Journal of Petroleum Exploration and Production Technology, 2018, 8:1255-1271. doi:10.1007/s13202-0180443-6 [20] GHOLAMI R, AADNOY B, RASOULI V, et al. An analytical model to predict the volume of sand during drilling and production[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2016, 8(4):521-532. doi:10.1016/j.jrmge.2016.01.002 [21] AL-SHAAIBI S K, AL-AJMI A M, AL-WAHAIBI Y. Three dimensional modeling for predicting sand production[J]. Journal of Petroleum Science and Engineering, 2013, 109:348-363. doi:10.1016/j.petrol.2013.04.015 [22] NOURI A, VAZIRI H, KURU E, et al. A comparison of two sanding criteria in physical and numerical modeling of sand production[J]. Journal of Petroleum Science & Engineering, 2006, 50(1):55-70. doi:10.1016/j.petrol.2005.10.003 [23] YAN Min, DENG Jingen, YU Baohua, et al. Comparative study on sanding characteristics between weakly consolidated sandstones and unconsolidated sandstones[J]. Journal of Natural Gas Science and Engineering, 2020, 76:163-183. doi:10.1016/j.jngse.2020.103183 |