[1] ZHOU Jingao, YIN Chen, ZENG Lianbo, et al. Development characteristics of grain shoals and favorable gas exploration areas in the 4th Member of Ordovician Majiagou Formation in the Ordos Basin[J]. Natural Gas Industry, 2022, 42(7): 17-30. doi: 10.3787/j.issn.1000-0976.2022.07.003 周进高, 尹陈, 曾联波, 等. 鄂尔多斯盆地奥陶系马家沟组四段颗粒滩发育特征及天然气勘探有利区[J]. 天然气工业, 2022, 42(7): 17-30. doi: 10.3787/j.issn.1000-0976.2022.07.003 [2] LIAO Huihong, SU Zhongtang, HUANG Wenming, et al. Origin of porphyry dolomite in the 5th sub-member of the 5th member of Ordovician Majiagou Formation (M55 sub-member), Ordos Basin[J]. Petroleum Geology & Experiment, 2022, 44(5): 835-844. doi: 10.11781/sysydz202205835 廖慧鸿, 苏中堂, 黄文明, 等. 鄂尔多斯盆地奥陶系马家沟组五段5亚段斑化白云岩成因[J]. 石油实验地质, 2022, 44(5): 835-844. doi: 10.11781/sysydz202205835 [3] WEI Xinshan, CHEN Hongde, ZHANG Daofeng, et al. Gas exploration potential of tight carbonate reservoirs: A case study of Ordovician Majiagou Formation in the eastern Yi-Shan slope, Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2017, 44(3): 319-329. doi: 10.11698/PED.2017.03.01 魏新善, 陈洪德, 张道锋, 等. 致密碳酸盐岩储集层特征与天然气勘探潜力——以鄂尔多斯盆地伊陕斜坡东部奥陶系马家沟组为例[J]. 石油勘探与开发, 2017, 44(3): 319-329. doi: 10.11698/PED.2017.03.01 [4] LI Lingchuan. Differential staged acid fracturing technology and its application in carbonate rock reservoir of Daniudi Gas Field, Ordos Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2022, 41(5): 168-174. doi: 10.19597/J.ISSN.1000-3754.202108067 李凌川. 鄂尔多斯盆地大牛地气田碳酸盐岩储层差异化分段酸压技术及其应用[J]. 大庆石油地质与开发, 2022, 41(5): 168-174. doi: 10.19597/J.ISSN.1000-3754.202108067 [5] LI Kezhi, XU Bingwei, QIN Yuying, et al. Study on diversion acid technology in tight carbonatite gas reservoir[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(2): 97-101. doi: 10.3863/j.issn.1674-5086.2013.02.014 李克智, 徐兵威, 秦玉英, 等. 致密碳酸盐岩气藏转向酸酸压技术研究[J]. 西南石油大学学报(自然科学版), 2013, 35(2): 97-101. doi: 10.3863/j.issn.1674-5086.2013.02.014 [6] CHEN Lili, LIU Fei, YANG Jian, et al. Horizontal well staged acid fracturing technology for deep and ultra-deep carbonate gas reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2022, 42(12): 56-64. doi: 10.3787/j.issn.1000-0976.2022.12.006 陈力力, 刘飞, 杨建, 等. 四川盆地深层超深层碳酸盐岩水平井分段酸压关键技术[J]. 天然气工业, 2022, 42(12): 56-64. doi: 10.3787/j.issn.1000-0976.2022.12.006 [7] GUO Jianchun, GUAN Chencheng, LI Xiao, et al. Core concept and key technology of three-dimensional acid-fracturing technology for deep carbonate reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(9): 14-24. doi: 10.3787/j.issn.1000-0976.2023.09.002 郭建春, 管晨呈, 李骁, 等. 四川盆地深层含硫碳酸盐岩储层立体酸压核心理念与关键技术[J]. 天然气工业, 2023, 43(9): 14-24. doi: 10.3787/j.issn.1000-0976.2023.09.002 [8] LI Yang, WANG Rui, ZHAO Qingmin, et al. Status and prospects for CO2 capture, utilization and storage technology in China[J]. Petroleum Science Bulletin, 2023, 8(4): 391-397. doi: 10.3969/j.issn.2096-1693.2023.04.030 李阳, 王锐, 赵清民, 等. 中国碳捕集利用与封存技术应用现状及展望[J]. 石油科学通报, 2023, 8(4): 391-397. doi: 10.3969/j.issn.2096-1693.2023.04.030 [9] YANG Bing, WANG Haizhu, LI Gensheng, et al. Fundamental study and utilization on supercritical CO2 fracturing developing unconventional resources: Current status, challenge and future perspectives[J]. Petroleum Science, 2022, 19(6): 2757-2780. doi: 10.1016/j.petsci.2022.08.029 [10] LIANG Weiguo, HE Wei, YAN Jiwei. Weakening and fracturing mechanism of mechanical properties of coal and rock caused by supercritical CO2[J]. Journal of China Coal Society, 2022, 47(7): 2557-2568. doi: 10.13225/j.cnki.jccs.YG21.1899 梁卫国, 贺伟, 阎纪伟. 超临界CO2致煤岩力学特性弱化与破裂机理[J]. 煤炭学报, 2022, 47(7): 2557-2568. doi: 10.13225/j.cnki.jccs.YG21.1899 [11] LI Xiaogang, RAN Longhai, YANG Zhaozhong, et al. Current status and prospect of study on supercritical CO2 fracturing characteristics[J]. Special Oil & Gas Reservoirs, 2022, 29(2): 1-8. doi: 10.3969/j.issn.1006-6535.2022.02.001 李小刚, 冉龙海, 杨兆中, 等. 超临界CO2压裂裂缝特征研究现状与展望[J]. 特种油气藏, 2022, 29(2): 1-8. doi: 10.3969/j.issn.1006-6535.2022.02.001 [12] CHEN Hao, LIU Xiliang, JIA Ninghong, et al. Prospects and key scientific issues of CO2 near-miscible flooding[J]. Petroleum Science Bulletin, 2020, 5(3): 392-401. doi: 10.3969/j.issn.2096-1693.2020.03.033 陈浩, 刘希良, 贾宁洪, 等. CO2近混相驱的关键科学问题与展望[J]. 石油科学通报, 2020, 5(3): 392-401. doi: 10.3969/j.issn.2096-1693.2020.03.033 [13] CAI Xin. Complex fracture propagation model of supercritical CO2 fracturing in unconventional reservoirs[J]. Fault-Block Oil and Gas Field, 2022, 29(1): 107-110, 123. doi: 10.6056/dkyqt202201018 蔡鑫. 非常规储层超临界CO2压裂复杂裂缝扩展模型[J]. 断块油气田, 2022, 29(1): 107-110, 123. doi: 10.6056/dkyqt202201018 [14] ZHAO Yulong, HUANG Yishu, ZHANG Tao, et al. Research progress on supercritical CO2 fracturing, enhanced gas recovery and storage in shale gas reservoirs[J]. Natural Gas Industry, 2023, 43(11): 109-119. doi: 10.3787/j.issn.1000-0976.2023.11.010 赵玉龙, 黄义书, 张涛, 等. 页岩气藏超临界CO2压裂-提采-封存研究进展[J]. 天然气工业, 2023, 43(11): 109-119. doi: 10.3787/j.issn.1000-0976.2023.11.010 [15] ZHENG Yong, WANG Haizhu, LI Gensheng, et al. Proppant transport characteristics in tortuous fractures induced by supercritical CO2 fracturing[J]. Natural Gas Industry, 2022, 42(3): 71-80. doi: 10.3787/j.issn.1000-0976.2022.03.008 郑永, 王海柱, 李根生, 等. 超临界CO2压裂迂曲裂缝内支撑剂运移特征[J]. 天然气工业, 2022, 42(3): 71-80. doi: 10.3787/j.issn.1000-0976.2022.03.008 [16] GUO Jianchun, ZHAN Li, GOU Bo, et al. Formation of fractures in carbonate rocks by pad acid fracturing with different phases of carbon dioxide[J]. Petroleum Exploration and Development, 2021, 48(3): 639-645. doi: 10.11698/PED.2021.03.19 郭建春, 詹立, 苟波, 等. 不同相态二氧化碳前置酸压碳酸盐岩裂缝形成规律[J]. 石油勘探与开发, 2021, 48(3): 639-645. doi: 10.11698/PED.2021.03.19 [17] ZHOU Dawei, ZHANG Guangqing. A review of mechanisms of induced fractures in SC-CO2 fracturing[J]. Petroleum Science Bulletin, 2020, 5(2): 239-253. doi: 10.3969/j.issn.2096-1693.2020.02.021 周大伟, 张广清. 超临界CO2压裂诱导裂缝机理研究综述[J]. 石油科学通报, 2020, 5(2): 239-253. doi: 10.3969/j.issn.2096-1693.2020.02.021 [18] CHEN Jiaxiang, YANG Ruiyue, HUANG Zhongwei, et al. Simulation study of supercritical carbon dioxide jet fracturing for carbonate geothermal reservoir based on fluid-thermo-mechanical coupling model[J]. Petroleum Science, 2023, 20(3): 1750-1767. doi: 10.1016/j.petsci.2022.11.005 [19] QIN Chao, JIANG Yongdong, KANG Zhiping, et al. Experimental study on tensile strength and acoustic emission characteristics of shale exposure to supercritical CO2[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2021, 43(8): 977-992. doi: 10.1080/15567036.2019.1633442 [20] ZHOU Jianping, TIAN Shifeng, ZHOU Lei, et al. Experimental investigation on the influence of sub- and super-critical CO2 saturation time on the permeability of fractured shale[J]. Energy, 2020, 191: 116574. doi: 10.1016/j.energy.2019.116574 [21] MANJUNATH G L, AKONO A T, HALJASMAA I, et al. Role of CO2 in geomechanical alteration of Morrow Sandstone across micro-meso scales[J]. International Journal of Rock Mechanics and Mining Sciences, 2023, 163: 105311. doi: 10.1016/j.ijrmms.2022.105311 [22] KANG Yumei, GU Jin, WEI Mengqi. Mechanical properties and acoustic emission characteristics of soft-hard interbedded rocks under different loading rates[J]. Journal of Northeastern University (Natural Science), 2023, 44(3): 399-407. doi: 10.12068/j.jssn.1005-3026.2023.03.013 康玉梅, 谷今, 魏梦琦. 不同加载速率下软硬互层类岩石力学及声发射特性[J]. 东北大学学报(自然科学版), 2023, 44(3): 399-407. doi: 10.12068/j.jssn.1005-3026.2023.03.013 [23] ZHANG Yulong, SHI Leiting, YE Zhongbin, et al. Experimental investigation of supercritical CO2-rock-water interactions in a tight formation with the pore scale during CO2-EOR and sequestration[J]. ACS Omega, 2022, 7(31): 27291-27299. doi: 10.1021/acsomega.2c02246 [24] LI Lei, CHEN Zheng, SU Yuliang, et al. Experimental investigation on enhanced-oil-recovery mechanisms of using supercritical carbon dioxide as prefracturing energized fluid in tight oil reservoir[J]. SPE Journal, 2021, 26(5): 3300-3315. doi: 10.2118/202279-PA [25] CHEN Guoqing, LI Tianbin, WANG Wei, et al. Weakening effects of the presence of water on the brittleness of hard sandstone[J]. Bulletin of Engineering Geology and the Environment, 2019, 78: 1471-1483. doi: 10.1007/s10064-017-1184-3 [26] LI Sihai, ZHANG Shicheng, MA Xinfang, et al. Coupled physical-chemical effects of CO2 on rock properties and breakdown during intermittent CO2-hybrid fracturing[J]. Rock Mechanics and Rock Engineering, 2020, 53: 1665-1683. doi: 10.1007/s00603-019-02000-6 [27] ZOU Yushi, LI Sihai, MA Xinfang, et al. Effects of CO2-brine-rock interaction on porosity/permeability and mechanical properties during supercritical-CO2 fracturing in shale reservoirs[J]. Journal of Natural Gas Science and Engineering, 2018, 49: 157-168. doi: 10.1016/j.jngse.2017.11.004 [28] OKHOVAT M R, HASSANI K, ROSTAMI B, et al. Experimental studies of CO2 brine rock interaction effects on permeability alteration during CO2-EOR[J]. Journal of Petroleum Exploration and Production Technology, 2020, 10: 2293-2301. doi: 10.1007/s13202-020-00883-8 [29] PIANE C D, SAROUT J. Effects of water and supercritical CO2 on the mechanical and elastic properties of Berea sandstone[J]. International Journal of Greenhouse Gas Control, 2016, 55: 209-220. doi: 10.1016/j.ijggc.2016.06.001 [30] LYU Qiao, RANJITH P G, LONG Xinping, et al. Experimental investigation of mechanical properties of black shales after CO2-water-rock interaction[J]. Materials, 2016, 9(8): 663. doi: 10.3390/ma9080663 [31] HUANG Yanhua, YANG Shengqi, LI Wenping, et al. Influence of super critical CO2 on the strength and fracture behavior of brine saturated sandstone specimens[J]. Rock Mechanics and Rock Engineering, 2020, 53: 653-670. doi: 10.1007/s00603-019-01933-2 [32] HANGX S, van der LINDEN A, MARCELIS F, et al. The effect of CO2 on the mechanical properties of the captain sandstone: Geological storage of CO2 at the Goldeneye Field (UK)[J]. International Journal of Greenhouse Gas Control, 2013, 19: 609-619. doi: 10.1016/j.ijggc.2012.12.016 [33] LI Xiaoer, WANG Peng, JIN Xiangfei, et al. Coal sample image processing and fracture morphological repre-sentation based on CT scanning[J]. Safety in Coal Mines, 2022, 53(2): 125-129. doi: 10.13347/j.cnki.mkaq.2022.02.020 李小二, 王鹏, 靳翔飞, 等. 基于CT扫描的煤样图像处理及裂隙形态表征[J]. 煤矿安全, 2022, 53(2): 125-129. doi: 10.13347/j.cnki.mkaq.2022.02.020 |