[1] ZACHOS J, PAGANI H, SLOAN L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. doi:10.11-26/science.1059412 [2] 吴国瑄,覃军干,茅绍智.南海深海相渐新统孢粉记 录[J].科学通报, 2003, 48(17): 1868-1871. doi:10.3321/j.issn:0023-074X.2003.1 WU Guoxuan, QIN Jungan, MAO Shaozhi. The Oligocene deep-sea palynological records in the South China Sea[J]. Chinese Science Bulletin, 2003, 48(17): 1868-1871. doi: 10.3321/j.issn:0023-074X.2003.1 [3] CLIFT P D, HOEGES K V, HESLOP D, et al. Correlation of himalayan exhumation rates and Asian monsoon intensity[J]. Nature Geoscience, 2008, 1(12): 875-880. doi:10.1038/ngeo351 [4] COLIN C, SIANI G, SICRE M A, et al. Impact of the East Asian monsoon rainfall changes on the erosion of the Mekong River Basin over the past 25,000 yr[J]. Marine Geology, 2010, 271(1-2): 84-92. doi:10.1016/j.margeo.2010.01.013 [5] LIU Zhifeng, WANG Hao, HANTORO W S, et al. Climatic and tectonic controls on chemical weathering in tropical southeast Asia (Malay Peninsula, Borneo, and Sumatra) [J]. Chemical Geology, 2012, 291:1-12. doi:10.1016/j.chemgeo.2011.11.015 [6] GIOSAN L, PONTON C, USMAN M, et al. Short communication:Massive erosion in monsoonal central India linked to late Holocene land cover degradation[J]. Earth Surface Dynamics, 2017, 5(4): 781-789. doi:10.5194/esurf-5-781-2017 [7] HAUTEVELLE Y, MICHELS R, MALARTRE F, et al. Vascular plant biomarkers as proxies for Palaeoflora and Palaeoclimatic changes at the Dogger/Malm transition of the Paris Basin (France) [J]. Organic Geochemistry, 2006, 37(5): 610-625. doi:10.1016/j.orggeochem.2005.12.010 [8] BARTLEIN P J, WEBB T, FLERI E. Holocene climatic change in the northern midwest:Pollen-derived estimates[J]. Quaternary Research, 1984, 22(3): 361-374. doi: 10.1016/0033-5894(84) 90029-2 [9] DAVIS B A S, BREWER S, STEVENSON A C, et al. The temperature of Europe during the Holocene reconstructed from pollen data[J]. Quaternary Science Reviews, 2003, 22(15-17): 1701-1716. doi:10.1016/S0277-3791(03) 00173-2 [10] GRANTHAM P J, POSTHUMA J, BAAK A. Triterpanes in a number of far-eastern crude oils[J]. Advances in Organic Geochemistry 1983, 1981:710-24. [11] TEN HAVEN HL, RULLKOETTER J. The diagenetic fate of Taraxer-14-ene and oleanene isomers[J]. Geochimica et Cosmochimica Acta, 1988, 52(10): 2543-2548. doi:10.1016/0016-7037(88) 90312-2 [12] MURRAY A P, SUMMONS R E, BOREHAM C J, et al. Biomarker and n-alkane isotope profiles for tertiary oils: Relationship to source rock depositional setting[J]. Organic Geochemistry, 1994, 22(3): 521-542. doi:10.1016/0146-6380(94) 90124-4 [13] AARSSEN B V, ZHANG Q X, LEEUW J W. An unusual distribution of bicadinanes, tricadinanes and oligocadinanes in sediments from the Yacheng Gas Field, China[J]. Organic Geochemistry, 1992, 18(6): 805-812. doi:10.1016/0146-6380(92) 90049-4 [14] NYTOFT H P, KILDAHL-ANDERSEN G, SAMUEL O J. Rearranged oleananes:Structural identification and distribution in a worldwide set of Late Cretaceous/Tertiary oils[J]. Organic Geochemistry, 2010, 41(10): 1104-1118. doi:10.1016/j.orggeochem.2010.06.008 [15] 覃军干,吴国瑄,李君,等.琼东南盆地渐新统上 新统孢粉、藻类记录[J].微体古生物学报, 2016, 33(4): 335-349. doi:10.16087/j.cnki.1000-0674.20161221.008 QIN Jungan, WU Guoxuan, LI Jun, et al. Spores, pollen, freshwater algae and dinoflagellate cysts recorded in the Oligocene-Pliocene from the southeast Hainan Basin, South China Sea[J]. Acta Micropalaeontologica Sinica, 2016, 33(4): 335-349. doi:10.16087/j.cnki.1000-0674.20161221.008 [16] DING Wenjing, HOU Dujie, GAN Jun, et al. Palaeovegetation variation in response to the Late Oligocene-Early Miocene East Asian summer monsoon in the Ying-Qiong Basin, South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2021, 567:110205. doi:10.1016/j.palaeo.2020.110205 [17] DING Wenjing, HOU Dujie, GAN Jun, et al. Sedimentary geochemical records of Late Miocene-Early Pliocene palaeovegetation and palaeoclimate evolution in the YingQiong Basin, South China Sea[J]. Marine Geology, 2022, 445:106750. doi:10.1016/j.margeo.2022.106750 [18] 孙瑞,韩银学,曾清波,等.琼东南盆地深水区东段崖 城组沉积特征及对海相烃源岩的控制[J].石油学报, 2019, 40(S2): 57-66. doi:10.7623/syxb2019S2006 SUN Rui, HAN Yinxue, ZENG Qingbo, et al. Sedimentary characteristics of Yacheng Formation in the eastern deepwater area in Qiongdongnan Basin and their control on marine source rocks[J]. Acta Petrolei Sinica, 2019, 40(S2): 57-66. doi:10.7623/syxb2019S2006 [19] 张迎朝,甘军,徐新德,等.琼东南盆地海相烃源岩的 发现与勘探意义[J].煤炭技术, 2020, 39(2): 43-45. doi:10.13301/j.cnki.ct.2020.02.013 ZHANG Yingzhao, GAN Jun, XU Xinde, et al. Marine source rock discovery and exploration significance in Qiongdongnan Basin[J]. Coal Technology, 2020, 39(2): 43-45. doi:10.13301/j.cnki.ct.2020.02.013 [20] 谢玉洪,张功成,唐武,等.南海北部深水区油气 成藏理论技术创新与勘探重大突破[J].天然气工 业, 2020, 40(12): 1-11. doi:10.3787/j.issn.1000-0976.2020.12.001 XIE Yuhong, ZHANG Gongcheng, TANG Wu, et al. Theoretical and technological innovation of oil and gas accumulation and major exploration breakthroughs in deepwater areas, northern South China Sea[J]. Natural Gas Industry, 2020, 40(12): 1-11. doi:10.3787/j.issn.1000-0976.2020.12.001 [21] 张功成,李增学,兰蕾,等.南海大气田天然气是煤型 气[J].天然气工业, 2021, 41(11): 12-23. doi:10.3787/j.issn.1000-0976.2021.11.002 ZHANG Gongcheng, LI Zengxue, LAN Lei, et al. Natural gas in large gas fields in the South China Sea is mainly coal-type gas[J]. Natural Gas Industry, 2021, 41(11): 12-23. doi:10.3787/j.issn.1000-0976.2021.11.002 [22] 刘传联.琼东南盆地渐新统烃源岩微观沉积特征与 沉积环境[J].石油学报, 2010, 31(4): 573-578. doi: 10.7623/syxb201004009 LIU Chuanlian. Sedimentary environment and micro-sediment characteristics of Oligocene source rocks in Qiongdongnan Basin[J]. Acta Petrolei Sinica, 2010, 31(4): 573-578. doi:10.7623/syxb201004009 [23] 李增学,宋广增,王东东,等.琼东南盆地渐新统煤 系(扇) 辫状河三角洲特征[J].地球科学, 2018, 43(10): 3471-3484. doi:10.3799/dqkx.2018.280 LI Zengxue, SONG Guangzeng, WANG Dongdong, et al. Characteristics of (fan) braided river delta in Oligocene coal measures of Qiongdongnan Basin[J]. Earth Science, 2018, 43(10): 3471-3484. doi:10.3799/dqkx.2018.280 [24] 侯读杰,丁文静,吴飘.一种油基泥浆污染岩屑的洗油 方法:CN107290204B[P]. 2019 10 24. HOU Dujie, DING Wenjing, WU Piao. Oil revomal methods of shale cuttings contaminated oil base mud:CN-107290204B[P]. 2019-10-24. [25] 赵炜,沈如江,廖文波,等.海南岛长昌盆地始新 世孢粉植物区系[J].吉林大学学报(地球科学版), 2009, 39(3): 379-385. doi:10.3969/j.issn.1671-5888.2009.03.004 ZHAO Wei, SHEN Rujiang, LIAO Wenbo, et al. Eocene palynoflora from Changchang Basin, Hainan island[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(3): 379-385. doi:10.3969/j.issn.1671-5888.2009.03.004 [26] HUNAG H S, MORLEY R, LICHT A, et al. Eocene palms from central Myanmar in a South-East Asian and global perspective:Evidence from the palynological record[J]. Botanical Journal of the Linnean Society, 2020, 194(2): 177-206. doi:10.1093/botlinnean/boaa038 [27] WANG Q, LI Y, FERGUSON D K, et al. An equable subtropical climate throughout China in the Miocene based on palaeofloral evidence[J]. Earth-Science Reviews, 2021, 218:103649. doi:10.1016/j.earscirev.2021.103649 [28] 金建华,廖文波,王伯荪,等.海南岛第三纪沉积环 境与古植物群落的多样性及其变迁[J].生态学报, 2002, 22(3): 425-432. doi:10.3321/j.issn:1000-0933.2002.03.020 JIN Jianhua, LIAO Wenbo, WANG Bosun, et al. Paleodiversification of the environment and plant community of tertiary in Hainan Island[J]. Acta Ecologica Sinica, 2002, 22(3): 425-432. doi:10.3321/j.issn:1000-0933.2002.03.020 [29] CRANWELL P A. Chain-length distribution of n-alkanes from lake sediments in relation to post-glacial environmental change[J]. Freshwater Biology, 1973, 3(3): 259-265. doi:10.1111/j.1365-2427.1973.tb00921.x [30] BOURBONNIERE R A, MEYERS P A. Sedimentary geolipid records of historical changes in the watersheds and productivities of lakes Ontario and Erie[J]. Limnology and Oceanography, 1996, 41(2): 352-359. doi:10.4319/lo.1996.41.2.0352 [31] EGLINTON G, HAMILTON R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780): 1322-1335. doi:10.11-26/science.156.3780.1322 [32] CRANWELL P A, EGLINTON G, ROBINSON N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-II[J]. Organic Geochemistry, 1987, 11(6): 513-527. doi:10.1016/0146-6380(87) 90007-6 [33] FICKEN K J, Li B, SWAIN D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7-8): 745-749. doi:10.1016/S0146-6380(00) 00081-4 [34] DIEFENDORF A F, FREEMAN K H, WING S L, et al. Production of n-alkyl lipids in living plants and implications for the geologic past[J]. Geochimica et Cosmochimica Acta, 2011, 75(23): 7472-7485. doi:10.1016/j.gca.2011.09.028 [35] BUSH R T, MCINERNEY F A. Leaf wax n-alkane distributions in and across modern plants:Implications for paleoecology and chemotaxonomy[J]. Geochimica et Cosmochimica Acta, 2013, 117:161-179. doi:10.1016/j.gca.2013.04.016 [36] ROMMERSKIRCHEN F, PLADER A, EGLINTON G, et al. Chemotaxonomic significance of distribution and stable carbon isotopic composition of long-chain alkanes and alkan-1-ols in C4 grass waxes[J]. Organic Geochemistry, 2006, 37(10): 1303-1132. doi:10.1016/j.orggeochem.2005.12.013 [37] KUMAR M, BOSKI T, LIMA-FILHO F P, et al. Biomarkers as indicators of sedimentary organic matter sources and early diagenetic transformation of pentacyclic triterpenoids in a tropical mangrove ecosystem[J]. Estuarine, Coastal and Shelf Science, 2019, 229:106403. doi:10.1016/j.ecss.2019.106403 [38] SCHEFUß E, RATMEYER V, STUUT J-B W, et al. Carbon isotope analyses of n-alkanes in dust from the lower atmosphere over the central eastern Atlantic[J]. Geochimica et Cosmochimica Acta, 2003, 67(10): 1757-1767. doi:10.1016/S0016-7037(02) 01414-X [39] GAGOSIAN R B, PELTZER E T. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry, 1986, 10(4-6): 661-669. doi:10.1016/S0146-6380(86) 80002-X [40] TIPPLE B J, PAGANI M. Environmental control on eastern broadleaf forest species' leaf wax distributions and D/H ratios[J]. Geochimica et Cosmochimica Acta, 2013, 111:64-77. doi:10.1016/j.gca.2012.10.042 [41] PHILP R P, GILBERT T D. Biomarker distributions in Australian oils predominantly derived from terrigenous source material[J]. Organic Geochemistry, 1986, 10(1-3): 73-84. doi:10.1016/0146-6380(86) 90010-0 [42] MATHUR N. Tertiary oils from Upper Assam Basin, India:A geochemical study using terrigenous biomarkers[J]. Organic Geochemistry, 2014, 76:9-25. doi:10.1016/j.orggeochem.2014.07.007 [43] RUDRA A, DUTTA S, RAJU S V. The paleogene vegetation and petroleum system in the tropics:A biomarker approach[J]. Marine and Petroleum Geology, 2017, 86: 38-51. doi:10.1016/j.marpetgeo.2017.05.008 [44] MURRAY A P, SOSROWIDJOJO I B, ALEXANDER R, et al. Oleananes in oils and sediments:Evidence of marine influence during early diagenesis?[J] Geochimica et Cosmochimica Acta, 1997, 61(6): 1261-1276. doi:10.1016/S0016-7037(96) 00408-5 [45] PAUL S, DUTTA S. Terpenoid composition of fossil resins from western India:New insights into the occurrence of resin-producing trees in Early Paleogene equatorial rainforest of Asia[J]. International Journal of Coal Geology, 2016, 167:65-74. doi:10.1016/j.coal.2016.09.008 [46] DING Wenjing, LI Youchuan, LAN Lei, et al. Biomarkers reveal the terrigenous organic matter enrichment in the late Oligocene-early Miocene marine shales in the Ying-Qiong Basin, South China Sea[J]. Acta Oceanologica Sinica, 2023, 42(3): 31-53. doi:10.1007/s13131-022-2081-6 [47] MEYERS P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34(2): 261-289. doi:10.1016/S0146-6380(02) 00168-7 [48] MEYERS P A, ISHIWATARI R. Lacustrine organic geochemistry:An overview of indicators of organic matter ssources and diagenesis in lake sediments[J]. Organic Geochemistry, 1993, 20(7): 867-900. doi:10.1016/0146-6380(93) 90100-P [49] MEYERS P A, LALLIER-VERGÉS E. Lacustrine sedimentary organic matter records of late quaternary paleoclimates[J]. Journal of Paleolimnology, 1999, 21(3): 345-372. doi:10.1023/A:1008073732192 [50] BOOT C S, ETTWEIN V J, MASLIN M A, et al. A 35,000 year record of terrigenous and marine lipids in amazon fan sediments[J]. Organic Geochemistry, 2006, 37(2): 208-219. doi:10.1016/j.orggeochem.2005.09.002 [51] GANAI J A, RASHID S A, ROMSHOO S A. Evaluation of terrigenous input, diagenetic alteration and depositional conditions of Lower Carboniferous carbonates of Tethys Himalaya, India[J]. Solid Earth Sciences, 2018, 3(2): 33-49. doi:10.1016/j.sesci.2018.03.002 [52] KONG Xiangxin, JIANG Zaixing, ZHENG Youheng, et al. Organic geochemical characteristics and organic matter enrichment of mudstones in an Eocene saline lake, Qianjiang Depression, Hubei Province, China[J]. Marine and Petroleum Geology, 2020, 114:104194. doi:10.1016/j.marpetgeo.2019.104194 [53] SUN Rui, LI Zhong, ZHAO Zhigang, et al. Characteristics and origin of the lower Oligocene marine source rocks controlled by terrigenous organic matter supply in the Baiyun Sag, northern South China Sea[J]. Journal of Petroleum Science and Engineering 2020, 187:106821. doi:10.1016/j.petrol.2019.106821 [54] HINRICHS K U, RULLKOTTER J. Terrigenous and marine lipids in amazon fan sediments:Implications for sedimentological reconstructions[C]. Proceedings of the Ocean Drilling Program:Scientific Results 155, 1997. doi: 10.2973/odp.proc.sr.155.238.1997 [55] EDWARDS D, PRESTON J, KENNARD J, et al. Geochemical characteristics of hydrocarbons from the Vulcan Sub-basin, western Bonaparte Basin, Australia[C]. Northern Territory Geological Survey:Proceedings of the Timor Sea Symposium, 2004. [56] CESAR J, GRICE K. Molecular fingerprint from plant biomarkers in Triassic-Jurassic petroleum source rocks from the Dampier sub-Basin, northwest shelf of Australia[J]. Marine and Petroleum Geology, 2019, 110:189-197. doi:10.1016/j.marpetgeo.2019.07.024 [57] CLIFT P D, WAN S M, BLUSZTAJN J. Reconstructing chemical weathering, physical erosion and monsoon intensity since 25 Ma in the northern South China Sea:A review of competing proxies[J]. Earth-Science Reviews, 2014, 130:86-102. doi:10.1016/j.earscirev.2014.01.002 [58] KHARE N. Evidence of increased rainfall prior to 3500 years BP as revealed by river borne terrigenous flux:A study from west coast of India[J]. Quaternary International, 2018, 479:100-105. doi:10.1016/j.quaint.2017.05.055 |