[1] PICKERING K T, HISCOTT R N. Deep marine systems: Processes, deposits, environments, tectonics and sedimentation[M]. Hoboken: American Geophysical Union, 2015. [2] 刘小兵,窦立荣. 国际大油公司深水油气勘探实践及启示——以圭亚那斯塔布鲁克区块为例[J]. 中国石油勘探, 2023, 28(3): 78-89. doi: 10.3969/j.issn.1672-7703.2023.03.007 LIU Xiaobing, DOU Lirong. Practice and enlightenment of deepwater petroleum exploration of international major oil companies: A case study of Guiyana Stabroek Block[J]. China Petroleum Exploration, 2023, 28(3): 78-89. doi: 10.3969/j.issn.1672-7703.2023.03.007 [3] 李大伟,李德生,陈长民,等. 深海扇油气勘探综述[J]. 中国海上油气, 2007, 19(1): 18-24. doi: 10.3969/j.issn.1673-1506.2007.01.004 LI Dawei, LI Desheng, CHEN Changmin, et al. An overview of hydrocarbon exploration in deep submarine fans[J]. China Offshore Oil and Gas, 2007, 19(1): 18-24. doi: 10.3969/j.issn.1673-1506.2007.01.004 [4] 赵晓明,吴胜和,岳大力,等. 西非某油田深水海底扇岩石相类型及其识别方法研究[J]. 测井技术, 2010, 34(5): 505-510. doi: 10.3969/j.issn.1004-1338.2010.05.023 ZHAO Xiaoming, WU Shenghe, YUE Dali, et al. Research on Litho faces types and identification method of deep-water submarine fan—Taking one oilfield of West African as a case[J]. Well Logging Technology, 2010, 34(5): 505-510. doi: 0.3969/j.issn.1004-1338.2010.05.023 [5] GUO Shuwen, YANG Naxia, GUO Chunxiang, et al. Intelligent sedimentary lithofacies identification with integrated well logging features[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 7500805. doi: 10.1109/LGRS.2023.3347565 [6] JIANG Chunbi, ZHANG Dongxiao, CHEN Shifeng. Lithology identification from well-log curves via neural networks with additional geologic constraint[J]. Geophysics, 2021, 86(5): 85-100. doi: 10.1190/geo2020-0676.1 [7] 孙玉洁,李晓彦,张超. 基于机器学习的黑云母成分判别花岗岩成因类型方法研究[J]. 现代地质, 2025, 39(3): 523-540. doi: 10.19657/j.geoscience.1000-8527.2025.001 SUN Yujie, LI Xiaoyan, ZHANG Chao. Machine-learning based discrimination of granite type using biotite composition[J]. Geoscience, 2025, 39(3): 523-540. doi: 10.19657/j.geoscience.1000-8527.2025.001 [8] SANTOS D T D, ROISENBERG M, NASCIMENTO M D S. Deep recurrent neural networks approach to sedimentary facies classification using well logs[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 1-5. doi: 10.1109/LGRS.2021.3053383 [9] 王婷婷,黄志贤,王洪涛,等. 基于MobileNetV2的岩石薄片岩性识别[J]. 吉林大学学报(地球科学版), 2024, 54(4): 1432-1442. doi: 10.13278/j.cnki.jjuese.20230106 WANG Tingting, HUANG Zhixian, WANG Hongtao, et al. Rock thin slice lithology identification based on MobileNetV2[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(4): 1432-1442. doi: 10.13278/j.cnki.jjuese.20230106 [10] 马陇飞,萧汉敏,陶敬伟,等. 基于梯度提升决策树算法的岩性智能分类方法[J]. 油气地质与采收率, 2022, 29(1): 21-29. doi: 10.13673/j.cnki.cn37-1359/te.2022.01.003 MA Longfei, XIAO Hanmin, TAO Jingwei, et al. Intelligent lithology classification method based on GBDT algorithm[J]. Petroleum Geology and Recovery Efficiency, 2022, 29(1): 21-29. doi: 10.13673/j.cnki.cn37-1359/te.2022.01.003 [11] XU Zhenhao, MA Wen, LIN Peng, et al. Deep learning of rock microscopic images for intelligent lithology identification: Neural network comparison and selection[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2022, 14(4): 1140-1152. doi: 10.1016/j.jrmge.2022.05.009 [12] 张凤博,马雪玲,董珍珍,等. 基于CNN和LSTM的机器学习模型在测井岩性识别的应用[J]. 西安石油大学学报(自然科学版), 2024, 39(5): 96-103, 133. doi:10.3969/j.issn.1673-064X.2024.05.012 ZHANG Fengbo, MA Xueling, DONG Zhenzhen, et al. Application of machine learning model based on CNN and LSTM in well logging lithology identification[J]. Journal of Xi'an Shiyou University (Natural Science Edition), 2024, 39(5): 96-103, 133. doi: 10.3969/j.issn.1673-064X.2024.05.012 [13] 管耀,王清辉,冯进,等. 基于机器学习的蚀变火成岩测录井综合岩性识别: 以南海北部珠江口盆地惠州266 井区为例[J]. 吉林大学学报(地球科学版), 2024, 54(1): 345-358. doi: 10.13278/j.cnki.jjuese.20220310 GUAN Yao, WANG Qinghui, FENG Jin, et al. Comprehensive lithology recognition of altered igneous reservoirs based on machine learning for wireline and cutting logs in Huizhou Depression, Pearl River Mouth Basin, northern South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2024, 54(1): 345-358. doi: 10.13278/j.cnki.jjuese.20220310 [14] 郑阳. 基于深度学习的岩性识别研究[D]. 北京:中国石油大学(北京), 2017. ZHENG Yang. Research on lithology recognition based on deep learning[D]. Beijing: China University of Petroleum (Beijing), 2017. [15] 武中原,张欣,张春雷,等. 基于LSTM循环神经网络的岩性识别方法[J]. 岩性油气藏, 2021, 33(3): 120-128. doi: 10.12108/yxyqc.20210312 WU Zhongyuan, ZHANG Xin, ZHANG Chunlei, et al. Lithology identification based on LSTM recurrent neural network[J]. Lithologic Reservoirs, 2021, 33(3): 120-128. doi: 10.12108/yxyqc.20210312 [16] SHAN Liqun, LIU Yanchang, TANG Min, et al. CNNBiLSTM hybrid neural networks with attention mechanism for well log prediction[J]. Journal of Petroleum Science & Engineering, 2021, 205: 108838. doi: 10.1016/j.petrol.2021.108838 [17] 冯雅兴,龚希,徐永洋,等. 基于岩石新鲜面图像与孪生卷积神经网络的岩性识别方法研究[J]. 地理与地理信息科学, 2019, 35(5): 89-94. doi: 10.3969/j.issn.1672-0504.2019.05.015 FENG Yaxing, GONG Xi, XU Yongyang, et al. Lithology recognition based on fresh rock images and twins convolution neural network[J]. Geography and Geo-Information Science, 2019, 35(5): 89-94. doi: 10.3969/j.issn.1672-0504.2019.05.015 [18] ZHU Liping, LI Hongqi, YANG Zhongguo, et al. Intelligent logging lithological interpretation with convolution neural networks[J]. Petrophysics, 2018, 59(6): 799-810. doi: 10.30632/PJV59N6-2018a5 [19] CHAWLA N V, BOWYER K W, HALL L O. SMOTE: Synthetic minority over-sampling technique[J]. Journal of Artificial Intelligence Research, 2002, 16: 321-357. [20] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144. doi: 10.1145/3422622 [21] HSIN Y Y, DAI T S, TI Y W, et al. Feature engineering and resampling strategies for fund transfer fraud with limited transaction data and a time-inhomogeneous modi operandi[J]. IEEE Access, 2022, 10: 86101-86116. doi: 10.1109/ACCESS.2022.3199425 [22] HARSHINI S V, NIVEDHIDHA M, RAMKUMAR M P, et al. Copula GAN boosted random forest based network intrusion detection system for hospital network infrastructure[C]. Delhi: 14th International Conference on Computing Communication and Networking Technologies, 2023. [23] QADDOURA R, BILTAWI M M. Improving fraud detection in an imbalanced class distribution using different oversampling techniques[C]. Zarqa: 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence, 2022. [24] PATIL A P, JERE S, RAM R, et al. T5W: A paraphrasing approach to oversampling for imbalanced text classification[C]. Bangalore: 2022 IEEE International Conference on Electronics, Computing and Communication Technologies, 2022. [25] 王泽尚. 基于聚类回归的油气井套损图像智能检测研究[D]. 西安:西安石油大学, 2021. WANG Zeshang. Intelligent detection of casing damage image of oil and gas well based on cluster and regression[D]. Xi'an: Xi'an Shiyou University, 2021. [26] 王光宇,宋建国,徐飞,等. 不平衡样本集随机森林岩性预测方法[J]. 石油地球物理勘探, 2021, 56(4): 679-687, 669. doi: 10.13810/j.cnki.issn.1000-7210.2021.04.001 WANG Guangyu, SONG Jianguo, XU Fei, et al. Random forests lithology prediction method for imbalanced data sets[J]. Oil Geophysical Prospecting, 2021, 56(4): 679-687, 669. doi: 10.13810/j.cnki.issn.1000-7210.2021.04.001 [27] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [28] 徐晓刚,徐冠雷,王孝通,等. 经验模式分解(EMD)及其应用[J]. 电子学报, 2009, 37(3): 581-585. doi: 10.3321/j.issn:0372-2112.2009.03.028 XU Xiaogang, XU Guanlei, WANG Xiaotong, et al. Empirical mode decomposition and its application[J]. Acta Electronica Sinica, 2009, 37(3): 581-585. doi: 10.3321/j.issn:0372-2112.2009.03.028 [29] 李海涛,邓少贵,王跃祥,等. 基于经验模态分解的核磁共振去噪方法研究[J]. 西南石油大学学报(自然科学版), 2020, 42(3): 51-59. doi: 10.11885/j.issn.1674-5086.2019.09.16.32 LI Haitao, DENG Shaogui, WANG Yuexiang, et al. Research on NMR denoising method based on empirical mode decomposition[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 51-59. doi: 10.11885/j.issn.1674-5086.2019.09.16.32 [30] 杨勇,王观军,孙东,等. 基于金属磁记忆效应的管道泄漏定位技术研究[J]. 西南石油大学学报(自然科学版), 2013, 35(5): 165-171. doi: 10.3863/j.issn.1674-5086.2013.05.024 YANG Yong, WANG Guanjun, SUN Dong, et al. Study on leakage detection and localization of underground pipelines based on metal magnetic memory[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2013, 35(5): 165-171. doi: 10.3863/j.issn.1674-5086.2013.05.024 [31] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8): 1735-1780. doi: 10.1162/neco.1997.9.8.1735 [32] 钟原,刘小溶,王杰,等. 基于NER的石油非结构化信息抽取研究[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 165-173. doi: 10.11885/j.issn.1674-5086.2020.05.12.01 ZHONG Yuan, LIU Xiaorong, WANG Jie, et al. Research of extraction on petroleum unstructured information based on named entity recognition[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 165-173. doi: 10.11885/j.issn.1674-5086.2020.05.12.01 [33] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [34] LECUN Y A, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. doi: 10.1162/neco.1989.1.4.541 [35] 钟仪华,王淑宁,罗兰,等. 用深度学习挖掘油田开发指标预测模型的知识[J]. 西南石油大学学报(自然科学版), 2020, 42(6): 63-74. doi: 10.11885/j.issn.1674-5086.2020.05.11.02 ZHONG Yihua, WANG Shuning, LUO Lan, et al. Knowledge mining for oilfield development index prediction model using deep learning[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(6): 63-74. doi: 10.11885/j.issn.1674-5086.2020.05.11.02 [36] 杨永飞,刘夫贵,姚军,等. 基于生成对抗网络的页岩三维数字岩芯构建[J]. 西南石油大学学报(自然科学版), 2021, 43(5): 73-83. doi: 10.11885/j.issn.1674-5086.2021.01.15.02 YANG Yongfei, LIU Fugui, YAO Jun, et al. Reconstruction of 3D shale digital rock based on generative adversarial network[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2021, 43(5): 73-83. doi: 10.11885/j.issn.1674-5086.2021.01.15.02 [37] THOMAS B. Genetic algorithms+data structures=evolution programs[J]. Computational Statistics and Data Analysis, 1997, 24(3): 372-373. doi: 10.1016/S0167-947-3(97)87028-4 [38] STEPHAN A G, ADEDAYO A A, TIMOTHY R M. Transient fan architecture and depositional controls from near-surface 3-D seismic data, Niger Delta continental slope[J]. AAPG Bulletin, 2005, 89(5): 627-643. doi: 10.1306/11200404025 [39] DAMUTH J E. Neogene gravity tectonics and depositional processes on the deep Niger Delta continental margin[J]. Marine and Petroleum Geology, 1994, 11(3): 321-346. doi: 10.1016/0264-8172(94)90053-1 [40] HARVEY A, COHEN K M. Sedimentation and shale tectonics of the northwestern Niger Delta front[J]. Marine and Petroleum Geology, 1996, 13(3): 313-328. doi: 10.1016/0264-8172(95)00067-4 [41] JOHN H S, FRANK B, FREDDY C. Structural styles in the deep-water fold and thrust belts of the Niger Delta[J]. AAPG Bulletin, 2005, 89(6): 753-780. doi: 10.1306/02170504074 |