[1] 郭旭升,胡东风,刘若冰,等. 四川盆地二叠系海陆过渡相页岩气地质条件及勘探潜力[J]. 天然气工业, 2018, 38(10): 11-18. doi: 10.3787/j.issn.1000-0976.2018.10.002 GUO Xusheng, HU Dongfeng, LIU Ruobing, et al. Geological conditions and exploration potential of permian marine-continent transitional facies shale gas in the Sichuan Basin[J]. Natural Gas Industry, 2018, 38(10): 11-18. doi: 10.3787/j.issn.1000-0976.2018.10.002 [2] 邹才能,杜金虎,徐春春,等. 四川盆地震旦系——寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3): 278-293. doi: 10.11698/PED.2014.03.03 ZOU Caineng, DU Jinhu, XU Chunchun, et al. Formation, distribution, resource potential and discovery of the Sinian Cambrian giant gas field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3): 278-293. doi: 10.11698/PED.2014.03.03 [3] 邹才能,赵群,丛连铸,等. 中国页岩气开发进展、 潜力及前景[J]. 天然气工业, 2021, 41(1): 1-14. doi: 10.3787/j.issn.1000-0976.2021.01.001 ZOU Caineng, ZHAO Qun, CONG Lianzhu, et al. Development progress, potential and prospect of shale gas in China[J]. Natural Gas Industry, 2021, 41(1): 1-14. doi: 10.3787/j.issn.1000-0976.2021.01.001 [4] 缪欢,郑洪扬,范文龙,等. 四川盆地龙马溪组深层页岩储层压力与含气量动态演化过程[J]. 世界石油工业, 2024, 31(5): 19-29, 39. doi: 10.20114/j.issn.1006-0030.20240313001 MIAO Huan, ZHENG Hongyang, FAN Wenlong, et al. Dynamic evolution process of pressure and gas content in the Longmaxi Formation deep shale reservoir of Sichuan Basin[J]. World Petroleum Industry, 2024, 31(5): 19-29, 39. doi: 10.20114/j.issn.1006-0030.20240313001 [5] 周晓峰,郭伟,李熙喆,等. 四川盆地五峰组—龙马溪组有机质类型与有机孔配置的放射虫硅质页岩岩石学证据[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 12-22. doi: 10.3969/j.issn.1673-5005.2022.05.002 ZHOU Xiaofeng, GUO Wei, LI Xizhe, et al. Mutual relation between organic matter types and pores with petrological evidence of radiolarian siliceous shale in Wufeng-Longmaxi Formation, Sichuan Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 12-22. doi: 10.3969/j.issn.1673-5005.2022.05.002 [6] 赵群,周天琪,王红岩,等. 页岩气资源/储量计算中吸附参数确定的新方法——以四川盆地五峰组—龙马溪组页岩为例[J]. 天然气工业, 2023, 43(1): 47-54. doi: 10.3787/j.issn.1000-0976.2023.01.005 ZHAO Qun, ZHOU Tianqi, WANG Hongyan, et al. A novel method for determining adsorption parameters in shale gas resources/reserves calculation: A case study of the Wufeng Formation-Longmaxi Formation in the Sichuan Basin[J]. Natural Gas Industry, 2023, 43(1): 47-54. doi: 10.3787/j.issn.1000-0976.2023.01.005 [7] 孙焕泉,蔡勋育,胡德高,等. 页岩气立体开发理论技术与实践——以四川盆地涪陵页岩气田为例[J]. 石油勘探与开发, 2023, 50(3): 573-584. doi: 10.11698/PED.20220847 SUN Huanquan, CAI Xunyu, HU Degao, et al. Theory, technology and practice of shale gas three-dimensional development: A case study of Fuling Shale Gas Field in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(3): 573-584. doi: 10.11698/PED.20220847 [8] 商晓飞,段太忠,包汉勇,等. 基于裂缝相表征的页岩气藏天然裂缝新模型——以涪陵页岩气田焦石坝区块为例[J]. 天然气工业, 2023, 43(6): 44-56. doi: 10.3787/j.issn.1000-0976.2023.06.004 SHANG Xiaofei, DUAN Taizhong, BAO Hanyong, et al. A new model of natural fractures in shale gas reservoirs based on fracture facies characterization: A case study from the Jiaoshiba Block of the Fuling Shale Gas Field[J]. Natural Gas Industry, 2023, 43(6): 44-56. doi: 10.3787/j.issn.1000-0976.2023.06.004 [9] 雍锐,陈更生,杨学锋,等. 四川长宁—威远国家级页岩气示范区效益开发技术与启示[J]. 天然气工业, 2022, 42(8): 136-147. doi: 10.3787/j.issn.1000-0976.2022.08.011 YONG Rui, CHEN Gengsheng, YANG Xuefeng, et al. Profitable development technology of the Changning-Weiyuan National Shale Gas Demonstration Area in the Sichuan Basin and its enlightenment[J]. Natural Gas Industry, 2022, 42(8): 136-147. doi: 10.3787/j.issn.1000-0976.2022.08.011 [10] 马新华,谢军. 川南地区页岩气勘探开发进展及发展前景[J]. 石油勘探与开发, 2018, 45(1): 161-169. doi: 10.11698/PED.2018.01.18 MA Xinhua, XIE Jun. The progress and prospects of shale gas exploration and exploitation in southern Sichuan Basin, NW China[J]. Petroleum Exploration and Development, 2018, 45(1): 161-169. doi: 10.11698/PED.2018.01.18 [11] 马永生,蔡勋育,赵培荣. 中国页岩气勘探开发理论认识与实践[J]. 石油勘探与开发, 2018, 45(4): 561-574. doi: 10.11698/PED.2018.04.03 MA Yongsheng, CAI Xunyu, ZHAO Peirong. China's shale gas exploration and development: Understanding and practice[J]. Petroleum Exploration and Development, 2018, 45(4): 561-574. doi: 10.11698/PED.2018.04.03 [12] 郭旭升. 南方海相页岩气“二元富集”规律——四川盆地及周缘龙马溪组页岩气勘探实践认识[J]. 地质学报, 2014, 88(7): 1209-1218. doi: 10.19762/j.cnki.dizhixuebao.2014.07.001 GUO Xusheng. Rules of two-factor enrichiment for marine shale gas in southern China Understanding from the Longmaxi Formation shale gas in Sichuan Basin and its surrounding area[J]. Acta Geologica Sinica, 2014, 88(7): 1209-1218. doi: 10.19762/j.cnki.dizhixuebao.2014.07.0-01 [13] 张成林,张鉴,李武广,等. 渝西大足区块五峰组—龙马溪组深层页岩储层特征与勘探前景[J]. 天然气地球科学, 2019, 30(12): 1794-1804. doi: 10.11764/j.issn.1672-1926.2019.08.007 ZHANG Chenglin, ZHANG Jian, LI Wuguang, et al. Deep shale reservoir characteristics and exploration potential of Wufeng-Longmaxi Formations in Dazu Area, western Chongqing[J]. Natural Gas Geoscience, 2019, 30(12): 1794-1804. doi: 10.11764/j.issn.1672-1926.2019.08.007 [14] 吴建发,张成林,赵圣贤,等. 川南地区典型页岩气藏类型及勘探开发启示[J]. 天然气地球科学, 2023, 34(8): 1385-1400. doi: 10.11764/j.issn.1672-1926.2023.04.006 WU Jianfa, ZHANG Chenglin, ZHAO Shengxian, et al. Typical types of shale gas reservoirs in southern Sichuan Basin and enlightenment of exploration and development[J]. Natural Gas Geoscience, 2023, 34(8): 1385-1400. doi: 10.11764/j.issn.1672-1926.2023.04.006 [15] 赖富强,刘粤蛟,张海杰,等. 基于数字岩心模拟的深层页岩气储层可压性评价模型[J]. 中国石油大学学报(自然科学版), 2022, 46(5): 1-11. doi: 10.3969/j.issn.1673-5005.2022.05.001 LAI Fuqiang, LIU Yuejiao, ZHANG Haijie, et al. Fracturing properties model of deep shale gas reservoir based on digital core simulation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(5): 1-11. doi: 10.3969/j.issn.1673-5005.2022.05.001 [16] 蒋廷学,路保平,左罗,等. 页岩气地质工程可压度评价方法研究及应用[J]. 天然气与石油, 2022, 40(4): 68-74. doi: 10.3969/j.issn.1006-5539.2022.04.009 JIANG Tingxue, LU Baoping, ZUO Luo, et al. Research and applications on shale gas geologic-engineering fracness evaluation method[J]. Natural Gas and Oil, 2022, 40(4): 68-74. doi: 10.3969/j.issn.1006-5539.2022.04.009 [17] 沈均均,杨丽亚,王玉满,等. 鄂西地区上奥陶统五峰组观音桥段成因及其页岩气地质意义[J]. 中国石油大学学报(自然科学版), 2023, 47(2): 13-23. doi: 10.3969/j.issn.1673-5005.2023.02.002 SHEN Junjun, YANG Liya, WANG Yuman, et al. Genesis of Guanyinqiao bed of the Upper Ordovician Wufeng Formation and its geological significance of shale gas in western Hubei[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(2): 13-23. doi: 10.3969/j.issn.1673-5005.2023.02.002 [18] 曾义金,陈作,卞晓冰. 川东南深层页岩气分段压裂技术的突破与认识[J]. 天然气工业, 2016, 36(1): 61-67. doi: 10.3787/j.issn.1000-0976.2016.01.007 ZENG Yijin, CHEN Zuo, BIAN Xiaobing. Breakthrough in staged fracturing technology for deep shale gas reservoirs in SE Sichuan Basin and its implications[J]. Natural Gas Industry, 2016, 36(1): 61-67. doi: 10.3787/j.issn.10-00-0976.2016.01.007 [19] 蒋廷学,卞晓冰,左罗,等. 非常规油气藏体积压裂全生命周期地质工程一体化技术[J]. 油气藏评价与开发, 2021, 11(3): 297-304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004 JIANG Tingxue, BIAN Xiaobing, ZUO Luo, et al. Whole lifecycle geology-engineering integration of volumetric fracturing technology in unconventional reservoir[J]. Reservoir Evaluation and Development, 2021, 11(3): 297-304. doi: 10.13809/j.cnki.cn32-1825/te.2021.03.004 [20] 梁峰,吴伟,张琴,等. 四川盆地南部下寒武统筇竹寺组页岩孔隙结构特征与页岩气赋存模式[J]. 天然气工业, 2024, 44(3): 131-142. doi: 10.3787/j.issn.1000-0976.2024.03.011 LIANG Feng, WU Wei, ZHANG Qin, et al. Shale pore structure characteristics and shale gas occurrence pattern of the Lower Cambrian Qiongzhusi Formation in the southern Sichuan Basin[J]. Natural Gas Industry, 2024, 44(3): 131-142. doi: 10.3787/j.issn.1000-0976.2024.03.011 [21] 黄金亮,邹才能,李建忠,等. 川南下寒武统筇竹寺组页岩气形成条件及资源潜力[J]. 石油勘探与开发, 2012, 39(1): 69-75. HUANG Jinliang, ZOU Caineng, LI Jianzhong, et al. Shale gas generation and potential of the Lower Cambrian Qiongzhusi Formation in southern Sichuan Basin, China[J]. Petroleum Exploration and Development, 2012, 39(1): 69-75. [22] 梁峰,姜巍,戴赟,等. 四川盆地威远—资阳地区筇竹寺组页岩气富集规律及勘探开发潜力[J]. 天然气地球科学, 2022, 33(5): 755-763. doi: 10.11764/j.issn.1672-1926.2021.10.016 LIANG Feng, JIANG Wei, DAI Yun, et al. Enrichment law and resource potential of shale gas of Qiongzhusi Formation in Weiyuan-Ziyang areas, Sichuan Basin[J]. Natural Gas Geoscience, 2022, 33(5): 755-763. doi: 10.11764/j.issn.1672-1926.2021.10.016 [23] 张君峰,许浩,周志,等. 鄂西宜昌地区页岩气成藏地质特征[J]. 石油学报, 2019, 40(8): 887-899. doi: 10.7623/syxb201908001 ZHANG Junfeng, XU Hao, ZHOU Zhi, et al. Geological characteristics of shale gas reservoir in Yichang Area, western Hubei[J]. Acta Petrolei Sinica, 2019, 40(8): 887-899. doi: 10.7623/syxb201908001 [24] 谢武仁,姜华,马石玉,等. 四川盆地德阳—安岳裂陷晚震旦世早寒武世沉积演化特征与有利勘探方向[J]. 天然气地球科学, 2022, 33(8): 1240-1250. doi: 10.11764/j.issn.1672-1926.2022.03.012 XIE Wuren, JIANG Hua, MA Shiyu, et al. Sedimentary evolution characteristics and favorable exploration directions of Deyang-Anyue Rift within the Sichuan Basin in Late Sinian-Early Cambrian[J]. Natura Gas Geoscience, 2022, 33(8): 1240-1250. doi: 10.11764/j.issn.1672-1926.2022.03.012 [25] 郭彤楼,熊亮,叶素娟,等. 输导层(体)非常规天然气勘探理论与实践——四川盆地新类型页岩气与致密砂岩气突破的启示[J]. 石油勘探与开发, 2023, 50(1): 24-37. doi: 10.11698/PED.20220759 GUO Tonglou, XIONG Liang, YE Sujuan, et al. Theory and practice of unconventional gas exploration within carrier beds: Insight from the breakthrough of new type of shale gas and tight gas in Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2023, 50(1): 24-37. doi: 10.11698/PED.20220759 [26] 吴冬,邓虎成,熊亮,等. 四川盆地及其周缘下寒武统麦地坪组—筇竹寺组层序充填和演化模式[J]. 石油与天然气地质, 2023, 44(3): 764-777. doi: 10.11743/ogg-20230318 WU Dong, DENG Hucheng, XIONG Liang, et al. Sequence filling and evolutionary model of the Lower Cambrian Maidiping-Qiongzhusi Formations in Sichuan Basin and on its periphery[J]. Oil & Gas Geology, 2023, 44(3): 764-777. doi: 10.11743/ogg20230318 [27] 何骁,梁峰,李海,等. 四川盆地下寒武统筇竹寺组海相页岩气高产井突破与富集模式[J]. 中国石油勘探, 2024, 29(1): 142-155. doi: 10.3969/j.issn.1672-7703.2024.01.011 HE Xiao, LIANG Feng, LI Hai, et al. Breakthrough and enrichment mode of marine shale gas in the Lower Cambrian Qiongzhusi Formation in high-yield wells in Sichuan Basin[J]. China Petroleum Exploration, 2024, 29(1): 142-155. doi: 10.3969/j.issn.1672-7703.2024.01.011 [28] 戴彩丽,黄永平,刘长龙,等. 深层/超深层冻胶压裂液体系研究进展及展望[J]. 中国石油大学学报(自然科学版), 2023, 47(4): 77-92. doi: 10.3969/j.issn.1673-5005.2023.04.008 DAI Caili, HUANG Yongping, LIU Changlong, et al. Progress and prospect of fracturing fluid system for deep/ultra-deep reservoir reconstruction[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(4): 77-92. doi: 10.3969/j.issn.1673-5005.2023.04.008 [29] 任岚,蒋豪,赵金洲,等. 基于能量演化的超深层高温页岩脆性评价方法[J]. 地下空间与工程学报, 2023, 19(1): 148-156. REN Lan, JIANG Hao, ZHAO Jinzhou, et al. An evaluation method of rock brittleness for the ultra-deep and high temperature shale based on energy evolution[J]. Chinese Journal of Underground Space and Engineering, 2023, 19(1): 148-156. [30] 陈国庆,吴家尘,蒋万增,等. 基于弹性能演化全过程的岩石脆性评价方法[J]. 岩石力学与工程学报, 2020, 39(5): 901-911. doi: 10.13722/j.cnki.jrme.2019.0778 CHEN Guoqing, WU Jiachen, JIANG Wanzeng, et al. An evaluation method of rock brittleness based on the whole process of elastic energy evolution[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(5): 901-911. doi: 10.13722/j.cnki.jrme.2019.0778 [31] 王琛,高辉,费二战,等. 鄂尔多斯盆地长7 页岩储层压裂液渗吸规律及原油微观动用特征[J]. 中国石油大学学报(自然科学版), 2023, 47(6): 95-103. doi: 10.3969/j.issn.1673-5005.2023.06.011 WANG Chen, GAO Hui, FEI Erzhan, et al. Imbibition of fracturing fluid and microscopic oil production characteristics in Chang 7 shale reservoir in Ordos Basin[J]. Journal of China University of Petroleum (Edition of Natural Science), 2023, 47(6): 95-103. doi: 10.3969/j.issn.1673-5005.2023.06.011 [32] 李庆辉,李少轩,刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏, 2021, 28(3): 130-138. doi: 10.3969/j.issn.1006-6535.2021.03.020 LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130-138. doi: 10.3969/j.issn.1006-6535.2021.03.020 [33] 姜振学,梁志凯,申颖浩,等. 川南泸州地区页岩气甜点地质工程一体化关键要素耦合关系及攻关方向[J]. 地球科学, 2023, 48(1): 110-129. doi: 10.3799/dqkx.2022.139 JIANG Zhenxue, LIANG Zhikai, SHEN Yinghao, et al. Coupling key factors of shale gas sweet spot and research direction of geology-engineering integration in southern Sichuan[J]. Earth Science, 2023, 48(1): 110-129. doi: 10.3799/dqkx.2022.139 [34] 沈骋,赵金洲,任岚,等. 四川盆地龙马溪组页岩气缝网压裂改造甜点识别新方法[J]. 天然气地球科学, 2019, 30(7): 937-945. doi: 10.11764/j.issn.1672-1926.2019.03.008 SHEN Cheng, ZHAO Jinzhou, REN Lan, et al. A new method to identify fracturing sweet spot in Longmaxi Formation of Sichuan Basin, SW China[J]. Natural Gas Geoscience, 2019, 30(7): 937-945. doi: 10.11764/j.issn.1672-1926.2019.03.008 [35] 陈珂,于志豪,王守毅,等. 断层附近非均匀应力场页岩压裂缝网扩展模拟[J]. 断块油气田, 2023, 30(2): 213-221. doi: 10.6056/dkyqt202302005 CHEN Ke, YU Zhihao, WANG Shouyi, et al. Shale fracture network propagation simulation in non-uniform stress field near fault[J]. Fault-Block Oil & Gas Field, 2023, 30(2): 213-221. doi: 10.6056/dkyqt202302005 [36] 郭天魁,宫远志,刘晓强,等. 复杂裂缝中支撑剂运移铺置规律数值模拟[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 89-95. doi: 10.3969/j.issn.1673-5005.2022.03.010 GUO Tiankui, GONG Yuanzhi, LIU Xiaoqiang, et al. Numerical simulation of proppant migration and distribution in complex fractures[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 89-95. doi: 10.3969/j.issn.1673-5005.2022.03.010 [37] 曾庆磊,庄茁,柳占立,等. 页岩水力压裂中多簇裂缝扩展的全耦合模拟[J]. 计算力学学报, 2016, 33(4): 643-648. doi: 10.7511/jslx201604034 ZENG Qinglei, ZHUAG Zhuo, LIU Zhanli, et al. Fully coupled modeling for multiple clusters growth of hydraulic fractures in shale[J]. Chinese Journal of Computational Mechanics, 2016, 33(4): 643-648. doi: 10.7511/jslx201604034 [38] 李勇明,陈曦宇,赵金洲,等. 水平井分段多簇压裂缝间干扰研究[J]. 西南石油大学学报(自然科学版), 2016, 38(1): 76-83. doi: 10.11885/j.issn.1674-5086.2013.11.02.01 LI Yongming, CHEN Xiyu, ZHAO Jinzhou, et al. The effects of crack interaction in multi-stage horizontal fracturing[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2016, 38(1): 76-83. doi: 10.11885/j.issn.1674-5086.2013.11.02.01 [39] 朱海燕,刘英君,王向阳,等. 考虑支撑剂颗粒破碎的页岩分支裂缝导流能力[J]. 中国石油大学学报(自然科学版), 2022, 46(1): 72-79. doi: 10.3969/j.issn.1673-5005.2022.01.008 ZHU Haiyan, LIU Yingjun, WANG Xiangyang, et al. Modeling on conductivity of branched fractures of shale gas reservoir considering proppant fragmentation[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(1): 72-79. doi: 10.3969/j.issn.1673-5005.2022.01.008 [40] 周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业, 2020, 40(3): 82-91. doi: 10.3787/j.issn.1000-0976.2020.03.010 ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball sealer in stage diversion under the effect of heterogeneous stress field[J]. Natural Gas Industry, 2020, 40(3): 82-91. doi: 10.3787/j.issn.1000-0976.2020.03.010 [41] CHEN Ming, ZHANG Shicheng, ZHOU Tong, et al. Optimization of in-stage diversion to promote uniform planar multifracture propagation: A numerical study[J]. SPE Journal, 2020, 25(6): 3091-3110. doi: 10.2118/201114-PA [42] 胡东风,任岚,李真祥,等. 深层超深层页岩气水平井缝口暂堵压裂的裂缝调控模拟[J]. 天然气工业, 2022, 42(2): 50-58. doi: 10.3787/j.issn.1000-0976.2022.02.006 HU Dongfeng, REN Lan, LI Zhenxiang, et al. Simulation of fracture control during fracture-opening temporary plugging fracturing of deep/ultra deep shale-gas horizontal wells[J]. Natural Gas Industry, 2022, 42(2): 50-58. doi: 10.3787/j.issn.1000-0976.2022.02.006 [43] 李明辉,周福建,黄国鹏,等. 基于管单元的水平井多簇压裂有限元模拟方法[J]. 中国石油大学学报(自然科学版), 2022, 46(3): 105-112. doi: 10.3969/j.issn.1673-5005.2022.03.012 LI Minghui, ZHOU Fujian, HUANG Guopeng, et al. A finite element simulation method for multi-fracture propagation in horizontal wells based on fluid pipe element[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(3): 105-112. doi: 10.3969/j.issn.1673-5005.2022.03.012 [44] 薛亚斐,温哲豪,沈云波,等. 绒囊暂堵转向压裂裂缝转向能力及其力学机理分析[J]. 石油钻采工艺, 2018, 40(5): 633-640. doi: 10.13639/j.odpt.2018.05.016 XUE Yafei, WEN Zhehao, SHEN Yunbo, et al. Analysis on the fracture diverting capacity and mechanical mechanisms of fuzzy-ball temporary plugging, diverting and fracturing technology[J]. Oil Drilling & Production Technology, 2018, 40(5): 633-640. doi: 10.13639/j.odpt.2018.05.016 [45] 魏娟明. 滑溜水胶液一体化压裂液研究与应用[J]. 石油钻探技术, 2022, 50(3): 112-118. doi: 10.11911/syztjs.2022063 WEI Juanming. Research and application of slick water and gel-liquid integrated fracturing fluids[J]. Petroleum Drilling Techniques, 2022, 50(3): 112-118. doi: 10.11911/syztjs.2022063 [46] 魏娟明,贾文峰,陈昊,等. 深层页岩气压裂用高黏高降阻一体化稠化剂的制备与性能评价[J]. 油田化学, 2022, 39(2): 234-238. doi: 10.19346/j.cnki.1000-4092.2022.02.008 WEI Juanming, JIA Wenfeng, CHEN Hao, et al. Preparation and performance evaluation of integrated thickener with high viscosity and high drag reduction used for fracturing deeper shale gas[J]. Oilfield Chemistry, 2022, 39(2): 234-238. doi: 10.19346/j.cnki.1000-4092.2022.02.008 [47] 李小刚,李佳霖,朱静怡,等. 超临界二氧化碳压裂液降阻剂体系优选[J]. 天然气工业, 2023, 43(4): 103-115. doi: 10.3787/j.issn.1000-0976.2023.04.010 LI Xiaogang, LI Jialin, ZHU Jingyi, et al. Optimization of friction reducer systems for SC-CO2 fracturing fluids[J]. Natural Gas Industry, 2023, 43(4): 103-115. doi: 10.37-87/j.issn.1000-0976.2023.04.010 [48] 刘卫彬,徐兴友,刘畅,等. 超临界CO2+水力携砂复合体积压裂工艺对陆相页岩储层的改造机理及效果[J]. 石油学报, 2022, 43(3): 399-409. doi: 10.7623/syxb202203007 LIU Weibin, XU Xingyou, LIU Chang, et al. The stimulation mechanism and performance analysis of supercritical CO2 and hydraulic sand-carrying composite volume fracturing technology on continental shale reservoirs[J]. Acta Petrolei Sinica, 2022, 43(3): 399-409. doi: 10.7623/syxb-202203007 [49] 郭彤楼,熊亮,雷炜,等. 四川盆地南部威荣、永川地区深层页岩气勘探开发进展、挑战与思考[J]. 天然气工业, 2022, 42(8): 45-59. doi: 10.3787/j.issn.1000-0976.2022.08.005 GUO Tonglou, XIONG Liang, LEI Wei, et al. Deep shale gas exploration and development in the Weirong and Yongchuan areas, South Sichuan Basin: progress, challenges and prospect[J]. Natural Gas Industry, 2022, 42(8): 45-59. doi: 10.3787/j.issn.1000-0976.2022.08.005 |