西南石油大学学报(自然科学版) ›› 1990, Vol. 12 ›› Issue (4): 126-139.DOI: 10.3863/j.issn.1000-2634.1990.04.016

• 论文 • 上一篇    下一篇

一类临界增长拟线性椭圆Dirichlet问题的非平凡解

江晓涛   

  1. 数理系
  • 收稿日期:1990-03-09 修回日期:1900-01-01 出版日期:1990-11-20 发布日期:1990-11-20

NONTRIVIAL SOLUTION TO DIRICHLET PROBLEM OF A CLASS OF QUASILINEAR ELLIPTIC EQUATIONS WITH CRITICAL EXPONENT

Jiang Xiao-tao
  

  1. Dept. of Maths and Physics
  • Received:1990-03-09 Revised:1900-01-01 Online:1990-11-20 Published:1990-11-20

摘要: 本文对 中有界区域Ω上临界增长拟线性椭圆型方程 的Dirichlet问题,在满足一定的条件下,证明了非平凡广义解的存在性。

关键词: 拟线性椭圆方程, 临界指数, 变分泛函, 山路引理, 集中紧性原理

Abstract:

In this paper, Dirichlet problemis discussed, in which ΩcR~N is a bounded domain and f(x,u)=O(|ul~(Q-2)u)(u→∞, Q=(NP)/(N-P), N>p≥2 The auther has proved that the psoblem (*) possesses a nontrivial weak solution under given conditions of a_1(x,s) and f(x,u).

Key words: Quasilinear elliptic equation, Critical exponent, Variational function, Theorem of mountain path, Concentration-compactness principle