西南石油大学学报(自然科学版) ›› 1995, Vol. 17 ›› Issue (3): 28-36.DOI: 10.3863/j.issn.1000-2634.1995.03.004

• 地质勘探 • 上一篇    下一篇

地震数据反演中的Monte一Carlo算法、模拟退火算法(SA)及遗传算法(GA)

蒋录全
  

  1. (四川石油管理局地调处研究所情报室)
  • 收稿日期:1994-11-20 修回日期:1900-01-01 出版日期:1995-08-20 发布日期:1995-08-20
  • 通讯作者: 蒋录全

AnalysisofMonte-CarloAlgorithm,Simulated AnnealingAlgorithmandGenetieAlgorethm UsedinSeismieDataInversion

JiangLu-quan

  

  1. (Institute of Geologic Suszrey Department,Sichuan Petroleum Administration)
  • Received:1994-11-20 Revised:1900-01-01 Online:1995-08-20 Published:1995-08-20
  • Contact: JiangLu-quan

摘要: Monte一Carfo反演方法不是从方程出发直接未反问题,而是在可行解空问中随机产生一系列搜索.叙,通过检脸各搜索点得到反问题的解,该方法具有很强的杭噪音能力,不禽对问题作任何线性近似。模拟退火技米足把最优化问题与统计力学中热平衡问题进行类比得来的,它是一种最优化技术,把我们要找极值的函数看成是整个系统的能量函数,任一时刻的系‘统状态刘看成是模型空问的一个.点。其优点是可进免陷入局部极小值,缺点是计算蚤很大。遗传算法(GA)这种新的“全局优化”算法的出现早于模拟退火十多年。GA的实质足应用于一个模型群体的一组运算,使我们得到一个新的群体,它比上一代成员有更大的期望平均拟合度。上述三种用于反演问题求解的算法已广泛地应用在地球物理术解中,已成为求解昨线性反问题的有力数学工具。
.

关键词: 地震数据反演, Monte~Carfo算法, 模拟退火算法, 遗传算法, 利余静校正, 情报调研

Abstract: Monte一Carlo inversion method does not solve inverse problem by way of equations,but through the inspection of a series of searching points randomly generated in solvable model space. This method has strong antinoise ability, and needs no linearizing assump-tions. Simulated annealing (SA) technique is produced by comparing the optimum problems
with the thermal balance problens in statistical mechanics,and therefore,is an optimization technique which regards the function erquired to find its extreme value as an energy function of the whole system,and the system state at any time as a point in the model space. The technique has the advantage of avoiding local minimization,but has the drawback of much
calculation. Genetic algorithm (GA),a global optimization technique,appeared ten years earlier than SA. GA is in fact a group of operations applied to a model population to produce a new model population that has higher values of average fitness than the antecedent mem-
bers. The three algorithms mentioned above have been widely used in the solving of geo-physical problems and are a powerful mathematical tool for nonlinear inversion problems.

Key words: Seismic data inversion, Monte-Carlo algorithm, Simulated annealing al-gorithm, Genetic algorithn, Nonlinear optimization

中图分类号: