西南石油大学学报(自然科学版) ›› 1992, Vol. 14 ›› Issue (4): 148-154.DOI: 10.3863/j.issn.1000-2634.1992.04.019

• 基础学科 • 上一篇    

关于有限群的超可解性

涂道兴   

  1. 基础学科部
  • 收稿日期:1991-08-29 修回日期:1900-01-01 出版日期:1992-11-20 发布日期:1992-11-20

ON SUPERSOLVABILITY OF SOME FINITE GROUPS

Tu Dao-xing   

  1. Department of Basic Courses
  • Received:1991-08-29 Revised:1900-01-01 Online:1992-11-20 Published:1992-11-20

摘要:

本文证明了
定理1 设G为群,则W∞(G)=SI(G)
定理2 设G为群,N△G,若G/N超可解且N的素数阶元均属于W∞(G),则G超还解的充要条件是G与T2q无关。

关键词: 有限群, 极大超可解子群, 弱广义中心元, 超弱广义中心

Abstract:

In this paper we proved the following: 1)Theorem 2. Let G be a gronp, then w_∞(G)=SI(G). 2) Theorem 3. Let G be agroup and N be a normal subgroup of G. If G/N is super-solvable and all prime elements in N are containeb in w_∞(G), then G is supersolvable if and only if T_(2q) is not involved in G.

Key words: Finite group, Maximal supersolvable subgroup, Weakgeneralized-dentral element, Hyper-weak-generalized-center

中图分类号: