西南石油大学学报(自然科学版) ›› 2012, Vol. 34 ›› Issue (4): 75-82.

• 地质勘探 • 上一篇    下一篇

基于改进EMD 的地震信号去噪

杨凯,刘伟   

  1. 中海油田服务股份有限公司物探事业部,天津塘沽300451
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2012-08-01 发布日期:2012-08-01

Random Noise Attenuation of Seismic Signal Based on Improved EMD

Yang Kai, Liu Wei   

  1. Geophysical Exploration Division,China Oilfield Services Company Ltd.,Tanggu,Tianjin 300451,China
  • Received:1900-01-01 Revised:1900-01-01 Online:2012-08-01 Published:2012-08-01

摘要: 压制随机噪声是地震数据处理过程中的一个重要环节,目前大多数去噪技术都不同程度存在去噪效果差、易
损伤有效信号等问题。利用经验模态分解可将信号自适应地分解为不同特征尺度固有模态函数的优点,及小波变换
模极大值滤波方法对噪声的依赖性较小且适合于低信噪比信号去噪的优势,构造了一种经验模态分解与小波变换模
极大值相结合的新的去噪算法,该算法很好地实现了地震有效信号与随机噪声的分离,有效提高了地震数据信噪比。
将该算法应用于仿真实验和实际地震数据处理,结果都表明该方法明显优于常规经验模态分解去噪效果。

关键词: 经验模态分解, 小波变换模极大值, 随机噪声压制, 信噪比

Abstract: Random noise attenuation is an important step in seismic data processing;however,most random noise attenuation
methods have some problems such as poor de-noising effect and damaging effective signals to a certain degree. Empirical
Mode Decomposition(EMD)can self-adaptively decompose the signal into multi-scale Intrinsic Mode Function(IFM)and
wavelet transform modulus maxima de-noising method is available for low S/N signals. We construct a new random noise
attenuation algorithm by combining EMD with wavelet transform modulus maxima de-noising method,which can effectively
separate signals form random noise and well improve signal to noise ratio(S/N)of seismic data. The algorithm is applied on
numerical simulation and field data for random noise attenuation. The results reveals that the de-noising effect of new algorithm
is obviously better than that of conventional EMD.

Key words: empirical mode decomposition, wavelet transform modulus maxima, random noise attenuation, signal to noiseratio(S/N)

中图分类号: