西南石油大学学报(自然科学版) ›› 2017, Vol. 39 ›› Issue (5): 101-112.DOI: 10.11885/j.issn.16745086.2016.01.14.01
梁萌1, 袁海云2, 杨英1, 杨云博2, 蔺江涛2
收稿日期:
2016-01-14
出版日期:
2017-10-01
发布日期:
2017-10-01
作者简介:
梁萌,1987年生,男,汉族,山东济宁人,博士研究生,主要从事提高原油采收率方面的研究。E-mail:liangmeng@mail.ru;袁海云,1988年生,男,汉族,四川遂宁人,助理工程师,硕士,主要从事油气田开发方面研究。E-mail:819088945@qq.com;杨英,1988年生,男,汉族,河北唐山人,博士研究生,主要从事油气田钻完井方面的研究。E-mail:yyainngg@126.com;杨云博,1990年生,男,汉族,陕西西安人,助理工程师,硕士,主要从事油气田开发方面研究。E-mail:745782052@qq.com;蔺江涛,1983年生,男,汉族,陕西蒲城人,主要从事油气田开发方面的研究。E-mail:linjtao@cnpc.com
LIANG Meng1, YUAN Haiyun2, YANG Ying1, YANG Yunbo2, LIN Jiangtao2
Received:
2016-01-14
Online:
2017-10-01
Published:
2017-10-01
Contact:
梁萌,E-mail:liangmeng@mail.ru
摘要: 气体混相驱具有对地下环境影响小、采收系数高、可同时实现温室气体封存等优点。在优选注气工艺时,岩芯驱替实验、气体与原油的最小混相压力测定(MMP)是油藏实现混相驱的基础。针对上述问题,首先讨论了混相驱岩芯驱替实验的影响因素,其次分析了地层温度、气体组成、原油组成等条件对MMP的影响,再次,对比分析了不同测定MMP的实验方法,最后,对近年来新研发的MMP测试手段进行了归纳总结。当用天然岩芯进行混相驱研究时,为达到混相建议选择尽可能长的岩芯。MMP的测试手段种类繁多,但目前仍未形成公认的实验方法。
中图分类号:
梁萌, 袁海云, 杨英, 杨云博, 蔺江涛. 气体混相驱与最小混相压力测定研究进展[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112.
LIANG Meng, YUAN Haiyun, YANG Ying, YANG Yunbo, LIN Jiangtao. Research Progress on Miscible Gas Displacement and Determination of Minimum Miscibility Pressure[J]. 西南石油大学学报(自然科学版), 2017, 39(5): 101-112.
[1] LEENA K. 2014 worldwide EOR survey[J]. Oil & Gas Journal, 2014, 112(4):79-91. [2] JAMES J P, JAMES S P. Measurement and correlation of CO2 miscibility pressures[C]. SPE 9790, 1981. doi:10.-2118/9790-MS [3] VAHIDI A, GHASSEM Z. Sensitivity analysis of important parameters affecting minimum miscibility pressure (MMP) of nitrogen injection into conventional oil reservoirs[C]. SPE 111411, 2007. doi:10.2118/111411-MS [4] MENOUAR H. Discussion on carbon dioxide minimum miscibility pressure estimation:an experimental investigation[C]. SPE 165351, 2013. doi:10.2118/165351-MS [5] DONG M, HUANG S, SRIVASTAVA R. Effect of solution gas in oil on CO2 minimum miscibility pressure[J]. Journal of Canadian Petroleum Technology, 2000, 39(11):53-61. doi:10.2118/165351-MS [6] ADEKUNLE O O, HOFFMAN B T. Minimum miscibility pressure studies in the bakken[C]. SPE 169077, 2014. doi:10.2118/169077-MS [7] GHORBANI M, MOMENI A, MORADY B. New correlation for calculation of hydrocarbon gas minimum miscibility pressure (mmp) using wide experimental data[J]. Petroleum Science and Technology, 2013, 31(24):2577-2584. doi:10.1080/10916466.2011.561264 [8] HOU M Z, XIE H, YOON J. Underground storage of CO2 and energy[M]. Florida:CRC Press, 2010. [9] 杨红,余华贵. 原油组分对CO2最小混相压力的影响[J]. 精细石油化工进展, 2014, 15(6):2527. doi:10.3969/j.issn.1009-8348.2014.06.007 YANG Hong, YU Huagui. Experimental study on impact of crude oil components on minimum miscibility pressure between CO2 and crude oil[J]. Advances in Fine Petrochemicals, 2014, 15(6):25-27. doi:10.3969/j.issn.1009-8348.2014.06.007 [10] HEMMATI-SARAPARDEH A, AYATOLLAHI S, GHAZANFARI M H, et al. Experimental determination of interfacial tension and miscibility of the CO2-crude oil system; temperature, pressure, and composition effects[J]. Journal of Chemical & Engineering Data, 2014, 59(1):946-955. doi:10.1021/je400811h [11] XU Anzhu, MU Longxin, ZHAO Liangdong, et al. Analysis of miscibility of high sour component (H2S and CO2) content gas flooding under abnormal reservoir pressure[C]. SPE 176491, 2015. doi:10.2118/176491-MS [12] 尚宝兵,廖新维,赵晓亮,等. 杂质气体对二氧化碳驱最小混相压力和原油物性的影响[J]. 油气地质与采收率,2014,21(6):9294,98. doi:10.3969/j.issn.1009-9603.2014.06.023 SHANG Baobing, LIAO Xinwei, ZHAO Xiaoliang, et al. Research about the influence of impurities on MMP and crude oil properties for CO2 flooding[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(6):92-94, 98. doi:10.3969/j.issn.1009-9603.2014.06.023 [13] YANG Fulin, ZHAO Guibing, ADIDHARMA H, et al. Effect of oxygen on minimum miscibility pressure in carbon dioxide flooding[J]. Industrial & Engineering Chemistry Research, 2007, 46(4):1396-1401. doi:10.1021/-ie061279g [14] BELHAJ H, ABUKHALIFEH H, JAVID K. Miscible oil recovery utilizing N2 and/or HC gases in CO2 injection[J]. Journal of Petroleum Science and Engineering, 2013, 111(11):144-152. doi:10.1016/j.petrol.2013.08.-030 [15] Нефть. Метод определения коэффициента вытеснения нефти водой в лабораторных условиях[C]. Министерство нефтяной промышленности ОСТ, 39-195-86,1986. [16] YANG Wenzhe, ZHANG Liang, LIU Yu, et al. Dynamic stability characteristics of fluid fl34853. doi:10.1039/C5RA01877C [17] SONG Yongchen, YANG Wenzhe, WANG Dayong, et al. Magnetic resonance imaging analysis on the in-situ mixing zone of CO2 miscible displacement flows in porous media[J]. Journal of Applied Physics, 2014, 115(24):401-410. doi:10.1063/1.4885057 [18] ALEIDAN A, MAMORA D. Comparative study of oil recovery during miscible CO2 injection in carbonate cores and slimtube[C]. SPE 155411, 2011. doi:10.2118/155411-MS [19] ABDULRAZAG Z, AL-ATTAR H, AL-FARISI O, et al. Experimental investigation of the effect of injection water salinity on the displacement efficiency of miscible carbon dioxide WAG flooding in a selected carbonate reservoir[J]. Journal of Petroleum Exploration and Production Technology, 2015, 5(4):363-373. doi:10.1007/s13202-015-0155-0 [20] AYIRALA S C, RAO D N, CASTEEL J. Comparison of minimum miscibility pressures determined from gas-oil interfacial tension measurements with equation of state calculations[C]. SPE 84187, 2003. doi:10.2118/84187-MS [21] NEGAHBAN S, SHIRALKAR G S, GUPTA S P. Simulation of the effects of mixing in gasdrive core tests of reservoir fluids[J]. SPE Reservoir Engineering, 1990, 5(3):402-408. doi:10.2118/17377-PA [22] NOUAR A, FLOCK D L. Parametric analysis on the determination of the minimum miscibility pressure in slim tube displacements[J]. Journal of Canadian Petroleum Technology, 1983, 23(5):80-88. doi:10.2118/84-05-12 [23] EKUNDAYO J M, GHEDAN S G. Minimum miscibility pressure measurement with slim tube apparatus-how unique is the value?[C]. SPE 165966, 2013. doi:10.2118/-165966-MS [24] LINDELOFF N, MOGENSEN K, SCHOU P K, et al. Investigation of miscibility behavior of CO2-rich hydrocarbon systems-with implications for gas injection EOR[C]. SPE 166270, 2013. doi:10.2118/166270-MS [25] LI F F, YANG S L, CHEN H, et al. An improved method to study CO2-oil relative permeability under miscible conditions[J]. Journal of Petroleum Exploration & Production Technology, 2015, 5(1):45-53. doi:10.1007/s13202-014-0122-1 [26] OMOLE O, OSOBA J S. Effect of column length on CO2-crude oil miscibility pressure[J]. Journal of Canadian Petroleum Technology, 1989, 28(4):97-102. doi:10.2118/-89-04-07 [27] EKUNDAYO J M. Configuration of slim tube apparatus for consistent determination of minimum miscibility pressure (MMP) data[J]. Dissertations & Theses-Gradworks, 2012. [28] 郭平,李苗. 低渗透砂岩油藏注CO2混相条件研究[J]. 石油与天然气地质, 2007, 28(5):687692. doi:10.-3321/j.issn:0253-9985.2007.05.022 GUO Ping, LI Miao. A study on the miscible conditions of CO2 injection in low-permeability sandstone reservoirs[J]. Oil & Gas Geology, 2007, 28(5):687-692. doi:10.3321/-j.issn:0253-9985.2007.05.022 [29] TUYET H L. The effect of flow rate and core length on the longitudinal dispersion coefficient[D]. Canada:University of Alberta, 1995. [30] YELLIG W F, BAKER L E. Factors affecting miscible flooding dispersion coefficients[J]. Journal of Canadian Petroleum Technology, 1981, 20(4):69-75. doi:10.2118/-81-04-04 [31] Хлебников В Н, Губанов В Б, Полищук А М. Использование слим-моделей пласта дляфизического моделирования процессов вытеснения нефти смешивающимися агентами. Часть3. Особенности массопереноса при вытеснении нефти двуокисью углерода[J]. Нефтепромысловое дело, 2014(9):43-47. [32] Полищук А М, Хлебников В Н, Губанов В Б. Использование слим-моделей пласта(slim tubе) для физического моделирования процессов вытеснения нефти смешивающимися агентами. Часть1. Методология эксперимента[J]. Нефтепромысловое дело, 2014(5):19-24. [33] Хлебников В Н, Губанов В Б, Полищук А М. Использование слим-моделей пласта(slim tubе) для физического моделирования процессов вытеснения нефти смешивающимися агентами. Часть2. Оценка возможности применения стандартного фильтрационного оборудования для осуществления слим-методики[J]. Нефтепромысловое дело, 2014(6):32-38. [34] FERNø M A, STEINSBø M, ØYVIND Eide, et al. Parametric study of oil recovery during CO2 injections in fractured chalk:influence of fracture permeability, diffusion length and water saturation[J]. Journal of Natural Gas Science & Engineering, 2015, 27:1063-1073. doi:10.1016/-j.jngse.2015.09.052 [35] ПесоцкаяД В, Федоров М В, КлимовМ Ю, et al. Оценка потенциала утилизации газа путем его закачки в пла с тсцелью повышения коэффициента извлечения нефти[J]. Нефтяное хозяйство, 2013(2):74-77. [36] 刘玉章,陈兴隆. 低渗油藏CO2驱油混相条件的探讨[J]. 石油勘探与开发, 2010, 37(4):466470. LIU Yuzhang, CHEN Xinglong. Miscible conditions of CO2 flooding technology used in low permeability reservoirs[J]. Petroleum Exploration and Development, 2010, 37(4):466-470. [37] TEKLU T W, ALHARTHY N, KAZEMI H, et al. Phase behavior and minimum miscibility pressure in nanopores[J]. SPE Reservoir Evaluation & Engineering 2014, 17(3):396-403. doi:10.2118/168865-PA [38] TEKLU T W, ALHARTHY N, KAZEMI H, et al. Vanishing interfacial tension algorithm for MMP determination in unconventional reservoirs[C]. SPE 169517, 2014. doi:10.2118/169517-MS [39] TEKLU T W, ALHARTHY N, KAZEMI H, et al. Hydrocarbon and non-hydrocarbon gas miscibility with light oil in shale reservoirs[C]. SPE 169123, 2014. doi:10.2118/-169123-MS [40] TEKLU T W, ALHARTHY N, KAZEMI H, et al. Minimum miscibility pressure in conventional and unconventional reservoirs[C]//Unconventional Resources Technology Conference, 2013:2206-2216. doi:10.1190/-urtec2013-228 [41] NOJABAEI B, SIRIPATRACHAI N, JOHNS R T, et al. Effect of saturation dependent capillary pressure on production in tight rocks and shales:A compositionallyextended black oil formulation[C]. SPE 171028, 2014. doi:10.2118/171028-MS [42] MA Yixin, AHMAD J. Modeling the effects of porous media in dry gas and liquid rich shale on phase behavior[C]. SPE 169128, 2014. doi:10.2118/169128-MS [43] PITAKBUNKATE T, BALBUENA P B, MORIDIS G J, et al. Effect of confinement on pressure/volume/temperature properties of hydrocarbons in shale reservoirs[C]. SPE 170685, 2015. doi:10.2118/170685-MS [44] XIONG Yi, WINTERFIELD P H, WU Yushu, et al. Coupled geomechanics and pore confinement effects for modeling unconventional shale reservoirs[C]. SPE 1923960, 2014. doi:10.2118/1923960-MS [45] XIONG Yi, WINTERFIELD P H, WANG Cong, et al. Effect of large capillary pressure on fluid flow and transport in stress-sensitive tight oil reservoirs[C]. SPE 175074, 2015. doi:10.2118/175074-MS [46] DIDAR B R, AKKUTLU I Y. Confinement effects on hydrocarbon mixture phase behavior in organic nanopore[C]//Unconventional Resources Technology Conference, 2015. doi:10.15530/urtec-2015-2151854 [47] ZHANG K, GONZALEZ P M E, KONG B, et al. CO2 near-miscible flooding for tight oil exploitation[C]. SPE 176826, 2015. doi:10.2118/176826-MS [48] PARSA E, YIN X, OZKAN E. Direct observation of the impact of nanopore confinement on petroleum gas condensation[C]. SPE 175118, 2015. doi:10.2118/175118-MS [49] ALHARTHY N S, NGUYEN T, TEKLU T, et al. Multiphase compositional modeling in small-scale pores of unconventional shale reservoirs[C]. SPE 166306, 2013. doi:10.2118/166306-MS [50] JIN L, PU H, WANG Y, et al. The consideration of pore size distribution in organic-rich unconventional formations may increase oil production and reserve by 25%, eagle ford case study[C]//Unconventional Resources Technology Conference, 2015. doi:10.15530/urtec-2015-2148314 [51] FIRINCIOGLU T, OZGEN C, OZKAN E. An excessbubble-point-suppression correlation for black oil simulation of nano-porous unconventional oil reservoirs[C]. SPE 166459, 2013. doi:10.2118/166459-MS [52] KHOSHGHADAM M, KHANAL A, MAKINDE I, et al. Numerical study of production mechanisms in unconventional liquid-rich shale volatile oil reservoirs[C]. SPE 175994, 2015. doi:10.2118/175994-MS [53] SHEDID S A. Influences of different modes of reservoir heterogeneity on performance and oil recovery of carbon dioxide miscible flooding[J]. Journal of Canadian Petroleum Technology, 2009, 48(2):29-36. doi:10.2118/09-02-29 [54] YARBOROUGH L, SMITH L R. Solvent and driving gas compositions for miscible slug displacement[J]. Society of Petroleum Engineers Journal, 1970, 10(3):298-310. doi:10.2118/2543-PA [55] YELLIG W F, METCALFE R S. Determination and prediction of CO2 minimum miscibility pressures (includes associated paper 8876)[J]. Journal of Petroleum Technology, 1980, 32(1):160-168. doi:10.2118/7477-PA [56] KECHUT N I, ZAHIDAH M Z, NORAINI A, et al. New experimental approaches in minimum miscibility pressure (mmp) determination[C]. SPE 57286, 1999. doi:10.2118/-57286-MS [57] ADYANI W N, WAN Daud W A, DARMAN N B, et al. A systematic approach to evaluate asphaltene precipita-tion during CO2 injection[C]. SPE 143903, 2011. doi:10.-2118/143903-MS [58] JAVADPOUR F, FISHER D. Nanotechnology-based micromodels and new image analysis to study transport in porous media[J]. Journal of Canadian Petroleum Technology, 2008, 47(2):30-37. doi:10.2118/08-02-30 [59] WAN N A, KECHUT N I. Advanced technology for rapid minimum miscibility pressure determination (Part 1)[C]. Indonesia:Asia Pacific Oil and Gas Conference and Exhibition. Jakarta, Society of Petroleum Engineer, 2007. doi:10.2118/110265-MS [60] 李实,秦积舜,陈兴隆,等. 多管式最小混相压力测量方法及装置:中国, CN102798499 B[P].20141126. [61] 陈兴隆,李实,秦积舜,等. 多管式最小混相压力测量装置:中国, CN202916038U[P].20130501. [62] ABIODUN M A, SHAMEEM S, MENOUAR H. A new look at the minimum miscibility pressure (mmp) determination from slimtube measurements[C]. SPE 153383, 2012. doi:10.2118/153383-MS [63] ZHANG K, GU Y. Two different technical criteria for determining the minimum miscibility pressures (MMPs) from the slim-tube and coreflood tests[J]. Fuel, 2015, 161:146-156. doi:10.1016/j.fuel.2015.08.039 [64] RICHARD L C, HIEMI K. Apparatus and method for determining the minimum miscibility pressure of a gas in a liquid US, US 4627273 A[P].1986-12-09. [65] RAO D N. A new technique of vanishing interfacial tension for miscibility determination[J]. Fluid Phase Equilibria, 1997, 139(1):311-324. doi:10.1016/S0378-3812(97)00180-5 [66] AYIRALA S C, RAO D N. Comparative evaluation of a new gas/oil miscibility-determination technique[J]. Journal of Canadian Petroleum Technology, 2011, 50(9):71-81. doi:10.2118/99606-PA [67] 黄春霞,汤瑞佳,余华贵,等. 高压悬滴法测定CO2原油最小混相压力[J]. 岩性油气藏, 2015, 27(1):127130. doi:10.3969/j.issn.1673-8926.2015.01.019 HUANG Chunxia, TANG Ruijia, YU Huagui, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by hanging drop method[J]. Lithologic Reservoirs, 2015, 27(1):127-130. doi:10.3969/j.-issn.1673-8926.2015.01.019 [68] 彭宝仔,罗虎,陈光进,等. 用界面张力法测定CO2与原油的最小混相压力[J]. 石油学报, 2007, 28(3):9395. doi:10.7623/syxb200703018 PENG Baozi, LUO Hu, CHEN Guangjin, et al. Determination of the minimum miscibility pressure of CO2 and crude oil system by vanishing interfacial tension method[J]. Acta Petrolei Sinica, 2007, 28(3):93-95. doi:10.-7623/syxb200703018 [69] ZOLGHADR A, ESCROCHI M, AYATOLLAHI S. Temperature and composition effect on CO2 miscibility by interfacial tension measurement[J]. Journal of Chemical & Engineering Data, 2013, 58(5):1168-1175. doi:10.1021/-je301283e [70] GU Y, HOU P, LUO W. Effects of four important factors on the measured minimum miscibility pressure and first-contact miscibility pressure[J]. Journal of Chemical & Engineering Data, 2013, 58(5):1361-1370. doi:10.-1021/je4001137 [71] NOBAKHT M, MOGHADAM S, GU Y. Determination of CO2 minimum miscibility pressure from measured and predicted equilibrium interfacial tensions[J]. Industrial & Engineering Chemistry Research, 2008, 47(22):8918-8925. doi:10.1021/ie800358g [72] SHANG Q, XIA S, SHEN M, et al. Experiment and correlations for CO2-oil minimum miscibility pressure in pure and impure CO2 streams[J]. Rsc Advances, 2014, 4(109):63824-63830. doi:10.1039/C4RA11471J [73] DALVAND K, HEYDARIAN A. Determination of gasoil interfacial tension[J]. Energy Sources Part A Recovery Utilization & Environmental Effects, 2015, 37(16):1790-1796. doi:10.1080/15567036.2011.648305 [74] DAYANAND S, DANDINA N R. Experimental determination of minimum miscibility pressure (mmp) by gas/oil ift measurements for a gas injection EOR project[C]. SPE 132389, 2010. doi:10.2118/132389-MS [75] GHORBANI M, MOMENI A, SAFAVI S, et al. Modified vanishing interfacial tension (VIT) test for CO2-oil minimum miscibility pressure (MMP) measurement[J]. Journal of Natural Gas Science & Engineering, 2014, 20(2):92-98. [76] JR F M O, JESSEN K. An analysis of the vanishing interfacial tension technique for determination of minimum miscibility pressure[J]. Fluid Phase Equilibria, 2007, 255(2):99-109. doi:10.1016/j.jngse.2014.06.006 [77] RAO D N, LEE J I. Application of the new vanishing interfacial tension technique to evaluate miscibility conditions for the Terra Nova Offshore Project[J]. Journal of Petroleum Science & Engineering, 2002, 35(3-4):247-262. doi:10.1016/S0920-4105(02)00246-2 [78] JEANNOËL J, LAURENT A, PIERRE C. Is it still necessary to measure the minimum miscibility pressure?[J]. Industrial & Engineering Chemistry Research, 2002, 41(2):303-310. doi:10.1021/ie010485f [79] HARMON R A, GRIGG R B. Vapor-density measurement for estimating minimum miscibility pressure (includes associated papers 19118 and 19500)[J]. SPE Reservoir Engineering, 1988, 3(4):1215-1220. doi:10.2118/15403-PA [80] ABDURRAHMAN M, PERMADI A K, BAE W S. An improved method for estimating minimum miscibility pressure through condensation-extraction process under swelling tests[J]. Journal of Petroleum Science & Engineering, 2015, 131:165-171. doi:10.1016/j.petrol.2015.-04.033 [81] ABEDINI A, MOSAVAT N, TORABI F. Determination of minimum miscibility pressure of crude oil-CO2, system by oil swelling/extraction test[J]. Energy Technology, 2014, 2(5):431-439. doi:10.1002/ente.201400005 [82] MOUDI F Al-Ajmi, OSAMAH A A, MOHAMED A E. Planning miscibility tests and gas injection projects for four major kuwaiti reservoirs[C]. Kuwait:Kuwait International Petroleum Conference and Exhibition. Society of Petroleum Engineer, 2009. doi:10.2118/127537-MS [83] 赵金省,刘笑春,杨棠英,等. 一种测定CO2驱最小混相压力的实验方法[J]. 科技导报,2013,31(15):5658. doi:10.3981/j.issn.1000-7857.2013.15.009 ZHAO Jinsheng, LIU Xiaochun, YANG Tangying, et al. A new method for predicting the CO2 flooding minimum miscibility pressure[J]. Science & Technology Review, 2013, 31(15):56-58. doi:10.3981/j.issn.1000-7857.2013.15.009 [84] NGUYEN P, MOHADDES D, RIORDON J, et al. Fast fluorescence-based microfluidic method for measuring minimum miscibility pressure of CO2 in crude oils[J]. Analytical Chemistry, 2015, 87(6):3160-3164. doi:10.-1021/ac5047856 [85] 刘瑜,汤凌越,宋永臣,等. 一种应用CT测量油气最小混相压力的装置与方法:中国, CN103900755 A[P].20140702. [86] LIU Y, JIANG L, SONG Y, et al. Estimation of minimum miscibility pressure (MMP) of CO2 and liquid n-alkane systems using an improved MRI technique[J]. Magnetic Resonance Imaging, 2015, 34(2):97-104. doi:10.1016/j.-mri.2015.10.035 [87] HAWTHORNE S B, MILLER D J. Determining minimum miscibility pressure of an oil compositon with a fluid:US, US20150060057A1[P].2015-03-05. [88] MICHEL R. Method and device for measuring the minimum miscibility pressure of two phases:US, US7779672B2[P].2010-08-24. |
[1] | 张德平, 马锋, 吴雨乐, 董泽华. 用于CO2注气驱的油井缓蚀剂加注工艺优化研究[J]. 西南石油大学学报(自然科学版), 2020, 42(2): 103-109. |
[2] | 李永太, 孔柏岭. 提高三元复合驱现场应用效果的技术途径[J]. 西南石油大学学报(自然科学版), 2019, 41(4): 113-119. |
[3] | 冯高城, 胡云鹏, 姚为英, 张雨, 袁哲. 注气驱油技术发展应用及海上油田启示[J]. 西南石油大学学报(自然科学版), 2019, 41(1): 147-155. |
[4] | 孟凡坤, 雷群, 苏玉亮, 何东博. 低渗透油藏CO2非混相驱前缘移动规律研究[J]. 西南石油大学学报(自然科学版), 2018, 40(3): 121-128. |
[5] | 苑志旺, 杨宝泉, 杨莉, 顾文欢, 尚凡杰. 注气驱油藏新型气驱特征曲线推导及应用[J]. 西南石油大学学报(自然科学版), 2018, 40(2): 135-141. |
[6] | 石立华, 党海龙, 康胜松, 王维波, 王强. 注入压力对CO2驱气窜影响规律及裂缝封堵研究[J]. 西南石油大学学报(自然科学版), 2018, 40(1): 149-156. |
[7] | 周炜, 张建东, 唐永亮, 柴小颖, 周燕. 顶部注气重力驱技术在底水油藏应用探讨[J]. 西南石油大学学报(自然科学版), 2017, 39(6): 92-100. |
[8] | 李宏, 郑丽娜, 刘建军. 储层注气引起地表变形的全场建模与分析[J]. 西南石油大学学报(自然科学版), 2017, 39(3): 147-157. |
[9] | 朱文卿, 常宝华, 熊伟, 高树生. 裂缝-孔洞储层连通溶洞模式注气效果研究[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 100-106. |
[10] | 苏伟, 侯吉瑞, 刘娟, 朱道义, 席园园. 缝洞型碳酸盐岩油藏注气吞吐EOR效果评价[J]. 西南石油大学学报(自然科学版), 2017, 39(1): 133-139. |
[11] | 王伟1 *,杨辉2,黄春霞1,江绍静1,岳湘安3. 特低渗非均质油藏水窜后提高波及效率研究[J]. 西南石油大学学报(自然科学版), 2016, 38(3): 107-113. |
[12] | 郭日鑫*. 热自生CO2 吞吐中技术研究及其应用[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 139-144. |
[13] | 刘祖鹏1 *,李兆敏2. CO2 驱油泡沫防气窜技术实验研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 117-122. |
[14] | 刘永辉1 *,罗程程1,张烈辉1,王峰2,辛涛云2. 分层注CO2 井系统模型研究[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 123-127. |
[15] | 吴剑1,2 *,常毓文1,李嘉1,梁涛1,郭晓飞1. 低矿化度水驱技术增产机理与适用条件[J]. 西南石油大学学报(自然科学版), 2015, 37(5): 145-151. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 188
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 143
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||